Laser mold cleaning

Laser mold cleaning with CO2 laser

Laser cleaning is one of laserโ€™s many applications. The process is based on laser ablation, i.e. the removal of a portion of material from a surface. Ablation is at the basis of all common laser processes: cutting, drilling, engraving, marking.

While the purpose of these processes is to create cuts, holes or marks in the material, the aim of laser cleaning is to remove dirt particles from a given surface.

Laser cleaning of industrial moulds

The production process of thermoplastics is an example of an industrial laser cleaning application. The main production method for these materials is moulding. At the end of the production process, the moulds need to be restored to their original state. This step is crucial because the quality of the final part depends on it. The presence of material residues, or other debris, affects the final quality of the parts.

Traditionally, the cleaning process is carried out using one of three techniques: dry ice blasting, ultrasonic cleaning or manual cleaning. Each has both advantages and disadvantages.

Dry ice cleaning consists of directing a high pressure jet of dry ice onto the mould. The ice penetrates the mould cavities and removes residues. The operation is carried out by an operator who directs the jet onto the areas that need to be cleaned. The advantage of this technique is that it can be used directly in the production line. However, it is not an environmentally friendly method since it requires the use of large quantities of dry ice.

For ultrasonic cleaning, the mould is placed in special ultrasonic cleaning machines. In practice, this involves disassembling the part and immersing it in special tanks filled with solvent and water. In addition to the need to disassemble the mould, this method has the disadvantage of using polluting chemicals.

Manual cleaning consists of cleaning the moulds using a solvent and manual force. It is a slow and inefficient method.

Laser cleaning overcomes these disadvantages.

Firstly, it can be performed selectively: the laser only acts on materials that are compatible with its wavelength. Laser cleaning can therefore be used in sensitive applications where abrasion-based procedures such as sandblasting would be too invasive.

The absence of waste also makes it an environmentally friendly technique. Laser cleaning doesnโ€™t use solvents or other chemicals, doesnโ€™t produce any waste and also doesnโ€™t consume water or other resources. It is a thermodynamically efficient process. The laser vaporises the material by sublimation which makes it an environmentally friendly process.

Finally, laser cleaning is extremely precise. The process is completely digitally controlled which makes it possible to work on extremely small surfaces or follow extremely complex cleaning patterns. Unlike with traditional methods, it can clean hard-to-reach spaces and uneven surfaces.

A system tailored to your application

Laser cleaning is a versatile application. It is efficient, adaptable, precise and most importantly, ecological. El.En. is the ideal partner to create a tailor-made application for your production process. Contact us and we will be happy to help you find the best solution for your needs!

Paper digital converting

Paper processing is one of the main areas of application for the CO2 laser. The world of paper converting has benefited greatly from the spread this tool. The CO2 laser offers speed, efficiency and flexibility, allowing laser companies to meet the demands of an increasingly fragmented market.

Laser production processes also fit in perfectly with the digital printing processes that now dominate the converting industry.ย This is a sector that we know well at El.En. Over the years we have helped many companies introduce laser technology into their production processes. We have created numerous systems for paper processing, particularly for companies operating in the packaging sector.

Based on our experience, we will use this article to give an overview of laser applications for paper converting.

Laser and paper

Paper is part of our everyday life. There is no task or business that does not make use of some kind of paper material.

When we talk about paper, we include a wide range of materials. However, the various types of paper have a similar composition. At a microscopic level, a sheet of paper consists of a network of interwoven cellulose fibres, a filler, usually kaolin, and various chemicals derived from the manufacturing process.

The chemical structure of paper lends itself well to CO2 laser cutting. When the laser interacts with the cellulose, it dissolves its molecular structure, reducing the material to its basic components carbon, oxygen and hydrogen.

This processing system is very advantageous as it solves the main drawbacks of traditional paper cutting tools.

First of all, the laser offers flexibility. One of the methods for cutting paper is using dies. Each die can only be used to cut one shape. In order to obtain a new shape, a new cutting die must be created. This places a limit on how much work a company can accept: if the production batch isnโ€™t big enough to pay back the cost of the new die, it becomes economically disadvantageous to produce it.

Laser technology, on the other hand, is much more flexible because the entire cutting system is digitally controlled by software. Modifying the shape that needs to be cut simply requires software intervention. This makes it economically viable to process small production batches.

Mechanical cutting has another drawback. The use of blades is another method used to cut paper. This cutting mechanism produces dust and residues that are not compatible with modern digital printing processes, which are now predominant. This means that it is necessary to separate the printing and cutting phases.

Laser cutting processes, on the other hand, produce very little residue and are therefore compatible with digital printing processes. What’s more, laser technology is a completely digital process. It can therefore easily be used in integrated systems that can perform all the production processes required by the converting industry in a single step.

Another problem with mechanical systems is that they cannot achieve consistent high quality cuts. Blades carry the risk of creating irregular or poor quality cuts. Many applications, particularly in the packaging sector, require extremely precise cuts. Containers for liquid food products, for example, need to have perfectly sealed edges (i.e. where there are no loose, protruding fibres). Laser cutting achieves these results because heat seals the edges during the cutting process.

On the basis of what we have previously stated, the use of lasers is advantageous in situations where the use of mechanical cutting is not economically viable. Here are some examples:

  • need for high quality and precision cuts
  • production volumes of less than 1000 pieces
  • need to create integrated digital printing and cutting production systems
  • need to eliminate waste due to the high cost of production equipment
  • execution of bespoke work
  • execution of particularly complex cuts

Some paper laser cutting applications

It would be difficult to make a complete list of laser applications for paper, especially since many of these processes used to be carried out with mechanical cutting equipment. However, laser technology has made it possible to perform processes that used to be impossible or very difficult to do very easily.

One example of this is partial surface cuts, which make it possible to create packaging models with advanced features like easy-opening packaging or open-close. This type of application is particularly popular in the food industry. This type of packaging doesnโ€™t require any tools to be opened and therefore adds value to the product itself.

Conclusion

CO2 laser sources are ideal for paper processing. The CO2 laser interacts perfectly with the chemical composition of paper materials. Using it in this sector is very advantageous. As you can imagine, however, the possible implementations are numerous.

We would be happy to put our extensive experience in CO2 laser applications for the paper industry at your disposal. Feel free to contact us for information or a free quote.

Faux leather laser engraving

The synthetic leather market has seen exponential growth in recent years. Natural leather is becoming an increasingly scarce commodity, both for economic and environmental reasons. On the one hand, the need for finished products at ever lower prices limits the use of expensive raw materials, and on the other, animal and environmental issues are driving companies to choose eco-friendly solutions.

Red synthetic leather: it can be laser marked successfully

Synthetic leather is very similar to natural leather from both a technological and sensory point of view. Unlike natural leather, it is not a breathable material. It also needs a base layer, often made of cotton or other natural fibres.

The advantages of synthetic leather over hide are many:

  • production costs are very low
  • the production batches are very uniform
  • textures and effects that do not exist in nature can be produced
  • it is easier to cut and sew

Far from being a less noble alternative to the original material, synthetic leather is a practical and modern material. It can be successfully used everywhere traditional leather was, with the same aesthetic and technical results.

The composition of artificial leather

Synthetic leather is made up of two layers, an upper one that imitates leather and a lower one acting as a base.

The upper layer is composed of a synthetic polymer. The most used materials are PVC (Polyvinyl chloride) and Polyurethane (PU). The two materials differ slightly. Most synthetic leather is made of PVC due to its low cost and greater resistance. Polyurethane, a costlier material, is less frequently used even though it feels more like real leather to the touch.

The artificial leather base is in fabric which can be made from synthetic fibres, natural ones (usually cotton) or even natural-synthetic blends.

The role of the fabric base is very important. The mechanical properties of synthetic leather rely on the strength of its base. The lifespan of synthetic leather is in direct correlation to the one of the fabric base.

Can you laser engrave faux leather?

The answer is yes, you can. Due to its thermoplastic polymer composition, synthetic leather lends itself very well to laser processing, particularly with CO2 lasers. The interactions between materials such as PVC and Polyurethane and the laser beam achieve high energy efficiency, ensuring optimal results.

Laser marking and engraving

The marking and engraving processes are very similar. In both cases, the laser beam acts on the surface layers. The laser energy activates alterations which, depending on the intensity, can be more or less deep or radical.

In marking processes, the applied energy density is very low. The materialโ€™s transformations stay at a superficial level and are more aesthetic in nature.

In laser engraving, the applied energy density is higher and reaches deeper layers of the material. It therefore undergoes substantial chemical transformations. The marking is more visible and contrasted. The end result can have a tactile finish and even a natural texture.

Laser parameters

The system must be set according to certain parameters to achieve the desired laser marking or engraving effects. There is no universal rule one can follow to set the system. The correct parameters depend on factors such as:

  • the type of material used: polyvinyl chloride and polyurethane absorb energy differently. So the settings must be regulated differently.
  • the colour of the leather: light coloured leather is more reflective than a darker one. Dark leather therefore absorbs the laser beam better, resulting in greater energy efficiency and faster processing.

A correct laser setting will aim to achieve the correct energy density in order to obtain a clearly visible mark without damaging the material.

Laser Engraving Systems

Leather marking/engraving is one of the applications of galvo scanning. This category includes all processes in which the laser source is used in combination with a scanning head.

The scanning head distributes the laser beam produced by the source on the materialโ€™s surface.

Laser sources and scanning heads are available in different models depending on production needs. In order to make the right choice, it is necessary to know your particular manufacturing characteristics. Send us information about your production plant and requirements and we will be happy to design a tailor made leather laser marking/engraving system to suit your needs.

Laser welding of plastic film

The packaging sector has numerous applications for CO2 laser. There is nothing surprising there since the materials best suited for packaging are also the ones, due to both composition and shape, that work best with CO2 laser technology.

In previous articles, we have already seen some of the CO2 laser applications on materials such as thermoplastic film, wood and some of its by-products like MDF and paper and cardboard for innovative forms of packaging. The distinctive wavelength of CO2 laser makes cutting, perforation, incision and marking particularly efficient and cost effective.

Laser welding plastic film in a factory

CO2 laser is an efficient and versatile tool for the laser welding of thermoplastics, a popular technique used in the packaging sector. This process takes advantage of the fact that thermoplastics are easy to work with once theyโ€™ve been through a thermic treatment. In laymanโ€™s terms, the welding process consists of heating the area where the two thermoplastic pieces join with the laser beam until fusion point is reached.

This process can be applied to different types of plastics, either laminated or molded, opaque or transparent. There are many advantages to laser welding:

  • itโ€™s a very fast process
  • like all laser processes, itโ€™s extremely precise and easy to control
  • it doesnโ€™t leave residue or waste
  • it doesnโ€™t expose pieces to thermal or mechanical stress because the heated area is localised and the process isnโ€™t mechanical
  • itโ€™s highly automatable and easy to integrate with other systems, whether they be digital or analog

These characteristics have made it a tool of choice in sectors where precision, cleanliness and the absence of thermal or mechanical stress are determining factors. The production of biomedical devices or electronic devices, the production of parts and components for the automotive industry, the production of airtight packaging for the pharmaceutical and food industry are all examples of the applications of laser welding.

Laser welding for plastic film

In the world of packaging, laser welding is most used on laminated thermoplastics. The laser of choice for this technique is the CO2 laser.

Direct welding is the type of welding that works best with thin materials. As opposed to transmission laser welding used mainly for three-dimensional and moulded pieces, direct welding operates directly on the material. This process allows for a higher speed of productionand therefore increases productivity while lowering production costs.

The materials most used in the packaging industry are:

The interaction between the laser beam and the material cannot be predetermined. Many factors come into play: the type of polymer, the existence of added additives to the formula, the laser beamโ€™s speed of movement on the surface and the laser beamโ€™s intensity itself.

But as a general rule, the laserโ€™s effect is stronger on the materialโ€™s surface and decreases the deeper it gets. Adding carbon to thermoplastics can highly increase the materialโ€™s capacity for energy absorption, thus making the laser much more efficient.

Laser welding plastic film in rolls

Laser welding is perfect for the production of original packaging that brings added value to the product because it can work in a very localised way on complex shapes.

Equipment for laser welding of plastic film

A laser system for laser welding needs different components. The fundamental ones are a laser source, a scanning head and a software system to program and control the process.

Apart from the afore-mentioned items, a laser welding system should also include devices for product management, loading and unloading, and powering the laser source.

Laser welding plastic film in a packaging plant

In conclusion, laser welding applications are numerous since laser technology is so versatile. It can be adapted to completely digital processes or be integrated with analog production lines. This technology greatly lowers production costs and not only increases productivity but also the quality of the product.

Laser Die Cutting vs. Rotary Die Cutting: an innovative technique for the packaging industry

4679372120_74d23eb81e_b

The introduction of lasers in industrial processes has been a small revolution: the effectiveness and versatility of this technology has allowed us to significantly renew diverse production fields. Especially the die sector has seen radical changes over the past years due to innovations in laser technologies.

Die cutting revolves all around the cutting, drilling, and shaping low-strength materials such as paper, cardboard, rubber, fiber, and cloth. Die cutting tools are mainly used in the paper and packaging industry, and are known to be robust.

Traditional Die Cutting

The creation of a die is a process that requires a lot of time, specialized technicians, and materials. This tool is thus not economically advantageous for manufacturers with small production quantities or large production variations.

  • The creation of a die requires the following steps:
  • Engraving a wooden board, needed to support the die.
  • Cutting and folding of the steel blade, to be inserted into the incisions of the base.
  • Fixing the blade on the die holder

The entire process must be carried out with utmost precision, as the blade must fit perfectly into the incisions of the support table.

It is thus clear that the die can be preliminary used for large and standardized production volumes. Small production volumes, prototype designs, or customized processes are bound to have high production costs.

The CO2 laser – an efficient and accurate tool

Market segmentation and the need to meet diverse and customized processes have led manufacturers having to search for innovative solutions. The CO2 laser, due to its characteristics, proves to be the best and most efficient choice.

The high power stability and the particular wavelength of this laser make it the ideal tool to cut paper and cardboard, typical packaging materials.

These packaging materials have the following characteristics: low conductivity, high combustibility, low gasification temperature, minimum thickness. These characteristics make the perfect conditions for the CO2 laser. With these conditions the CO2 laser is known to have a high running speed, while maintaining minimal energy consumption

Each laser process is characterized by accuracy and speed. The laser path is managed by the computer that โ€œtranslatesโ€ the CAD design of the project into parameters such as power, speed, and position. In this way the laser beam produced by the CO2 laser source reaches the surface to be worked, causing the immediate evaporation of the material and therefore the realization of the process.

This process allows you to make cuts, perforations and engravings – in short all the operations of a die – in a fast, precise and flexible manner.

Laser Engraving Fashion Design: a sustainable application

laser-marking

The clothing industry is the second biggest polluting industry, being just behind the petrol industry. To give you an idea of the massive impact the fashion industry has on the environment, consider this: it is estimated that 10% of worldโ€™s greenhouse gas emissions are generated by the textile industry.

The textile industry is all but harmless to the environment since its production processes consume a lot of resourcesย such as water, energy and chemicals for the finishing process. This has led the industry to research more sustainable and eco friendly processes.

One of the most polluting phases of the production processes in the clothing industry is the finishing process, e.g. fabric decoration. Research shows that laser technology currently is the most eco friendly and sustainable application that can be used to decorate clothing and fabric. Not only did the laser technology stand out as a viable and efficient technology, but it also allowed designers to innovate products and designs.

To be honest, the use of laser technologies in the clothing industry is not entirely new, but dates back to the early 60โ€™s. From that moment on, researchers noticed the diverse advantages of this technology, such as precision and lack of wastes. After years of research, experimentation and applications, the CO2 laser has proven to be the most suitable technology for the fashion industry. The use of the CO2 laser is beneficial in terms of design as well as in terms of the companyโ€™s resources. All desired designs can be achieved, with millimetric precision, by applying the very vast and efficient laser marking processes on the fabric. The energy efficiency and the running speed of a CO2 laser source are incomparably superior to any other traditional production technique, resulting in a significant decrease of energetic resources. Furthermore, the technology solely modifies the surface of the material – this means that there is no need for water consumption or polluting chemicals.

Laser engraving for fashion design does not know limits in terms of versatility. Nearly all materials normally employed by the textile and clothing industry can easily be worked by the CO2 laser. The technology can engrave or mark either natural or synthetic fabrics. Recent studies have also revealed that this technology is highly suitably for the discoloration of clothing, in particularly jeans cotton.

The CO2 laser is especially suitable for the clothing industry due to its particular wavelength, which is well absorbed by non-metals and organic materials as they are bad conductors of heat and electricity. This allows you to achieve optimal results while consuming the least possible amount of energy resources. Inks, chemicals, and solvents are eliminated and there is thus no longer a need for large amounts of water: the eco-sustainability of the CO2 laser is thus evident.

This is also demonstrated by a recent study1 that analyzed the outcomes of laser decoration and innovative designs on wool and polyester fabrics versus decoration achieved by means of chemicals. The research paid particular attention to the weight, thickness, perspiration, thermal conductivity, and strength of the fabric after they had been engraved or marked. Both production methods have been tested with simple as well as complex patterns. The results have shown that the laser technology method performed better in all of the above named aspects, in comparison with traditional methods.

Besides that, the laser technology has also shown better results in terms of speed, precision, and resource consumption.

In conclusion, laser engraving for the clothing and textile industry is a more efficient, sustainable, and eco-friendly process than traditional methods of decoration.

1Application of Laser Engraving for Sustainable Fashion Design, G.X. Yuan, S.X. Jiang, E. Newton and W.M. Au, Research Journal of Textile and Apparel 2013 17:2, 21-27.

What materials can be cut by a CO2 laser?

paper-cut-laser

Wood, paper, cardboard, plastic, PMMA. And also rubber, leather, metals, and ceramics: CO2 lasers can cut a great number of materials. For this reason, CO2 lasers have become the most widely diffused laser technology for laser material processing.

However, despite the wide use of the CO2 laser we receive a lot of questions on possible appications that can all be summed up by what materials can be cut by CO2 laser?ย In this article we answerย to this question with a simpleย list of materialsย that can beย easily cutย with CO2 lasers (the links take to articles that examine each topic in depth):ย 

Fields of application

To go into the details, the following list displays the main applications of CO2 laser cutting, ordered by industry:

  • Papermaking industry
    • Cutting cardboard boxes
    • Cutting paper and cardboard
    • Stencil cut
    • Decorations
  • Woodworking industry
    • The cutting of any kind, and thickness, of wood, especially Plywood and MDF
    • Inlay fine wood
    • Engravings of any kind
  • Engravings and inlays
    • Laser engraving and cutting methacrylate
    • Laser engraving and cutting leather goods
    • Laser engraving name and number plates
    • Laser engraving and cutting textiles
    • Laser engraving electronic components
    • Laser engraving anodized aluminum and varnished metals. N.B.: the CO2 laser usually doesnโ€™t cut metal but can label or mark them indelibly.
    • Engraving of glass, marble, and stones
    • Inlays on ivory
  • Creation and Customization
    • Laser cutting hollow punches
    • Laser cutting for architectural models
    • Laser cutting plastic, cardboard, or wooden displays.
    • Contour and cut labels
    • Personalizing gadgets
    • Personalizing buttons
    • Material machining for model making

The list above is just a short list of the many different materials that can be processed by the CO2 lasers: there are lots of other materials that can be cut with the CO2 laser. Research on the applications of the CO2 laser is still an ongoing process, of which experimentation plays an important role: only experimentation provides us with certainty about the possible applications. For this reason we invite you to contact us whereby the material you want to work is not presented in the above list. Together we will find you the solution that fits your needs!

Laser Marking For Cheese and Ham

marking-cheese

Laser labeling of food is a recent innovation that makes it possible to reduce production waste by replacing traditional food labels with laser engraved labels. Laser marking of food is suitable for companies wanting to optimize their production process, saving resources and materials while also decreasing their ecological footprint. The possibilities are endless.

In fact, an increasing number of companies have realized that laser techniques are the key to process innovation. In a recent article we discussed the growing phenomena of natural branding, a process in which traditional food labels are replaced by the laser marking of the skin of food.

Fresh products such as fruits and vegetables can easily be markedย through a laser scanning head, a low power CO2 laser source and a software that controls the process. This procedure of laser marking permits us to imprint logos, barcodes, and any type of information on different types of food without affecting their quality. The marking does not affect the organoleptic properties of the food – it is a โ€œfriendly processโ€ as it only affects the most superficial layer of the skin of fresh products.

Pumpkins: ideal for natural branding

However, fruits and vegetables are not the only types of food that can be marked with the CO2 laser technology. Results have shown that even seasoned and semi-seasoned cheese and hams can be marked.

A case study: machine designed to mark seasoned and semi-seasoned cheese.

These seasoned and semi-seasoned products have always been marked through heat methods. Products are marked with their brand and codes that establishes the batch of production, identify the producer, allow to trace back the origin of the product. The easiest system to mark food is to use a metal to impress a brand by burning the surface of the product.

This traditional method, while being inexpensive, is incredibly slow and inflexible. In order to change the codes to be imprinted, a change in the marking tool is needed.

Laser marking of cheese

A more efficient way of imprinting information on food is to use the CO2 laser application. The laser allows to mark the surface of these products faster, with higher precision, and in a more secure way. In comparison to traditional ways of marking food, such as marking through means of heat, laser marking allows us to have an extremely precise process: it provides the possibility to adapt all parameters involved to suit the characteristics of the product to be marked. In this way the process of laser marking becomes the more precise way as it respects the unique characteristics of each product.

A system for marking the dairy products may consist of the following elements:

  • Completely washable stainless steel structure
  • Conveyer belt
  • CO2 laser source
  • High performance laser scanning head
  • Controlling software

The functioning is semi-automated. The system involves the presence of an operator placing the products to be marked on the conveyer belt. The conveyer belt transports the products to the laser processing space, isolated from the outside with doors that can be opened for inspection and sanitation reasons. Here the laser scanning head, controlled by a software, guides the laser beam on the surface of the product, performing the marking within seconds. In a few minutes only, the operator is able to perform the same operation dozens of times.

The advantage of such a system is its flexibility. First of all, the machine is designed to be modular: each module can be replicated and adapted to the needs of the manufacturer. For example, you can install different laser sources for different applications.

Furthermore, the system allows you to change the information you want to mark very quickly. You just have to modify the parameters inserted in the control software to perform a different process.

Laser heat treating: focus on a surface processing technique

bobine-acciaio

In this article we will focus on one of CO2 lasersโ€™ applications: laser heat treating of metals.

This type of treatment refers to the use of a laser as a heat source to be applied on a metal surface in order to make it more resistant to wear and mechanical fatigue.

Rolls of laminated steel in a plant

There are several metals this operation can be applied to and results vary according to the type of metal or metal alloy. Laser heat treatment is used most on steel. This alloy is ideal for this type of treatment because of its carbon content and versatility.

Laser heat treatment can actually be divided into 3 diffferent types of processes: laser transformation hardening, laser annealing and laser surface melting.

In this article we will cover the first of these applications since it is the most widespread.

The way this process works

As opposed to traditional heat treating processes, lasers can be controlled with extreme precision. This makes it possible to contain the area and the depth of the layer that will undergo the heat treatment.

This characteristic is very useful in the processing of components subjected to mechanical or thermal stress such as, for example, cogs and mechanical components in general or work-related tools.

Steel gears: laser heat treating can be used to improve strength and reduce wear

One of the most widespread applications on steel is the hardening process. It is caused by the transformation of the atomic structure of a layer of steel. More specifically, laser energy is applied to the surface followed by a rapid cooling. This causes a uniform diffusion of the carbon atoms which makes the surface more resistant to wear and mechanical stress.

Stacks of laminated steel

Here is a partial list of metals on which the process can be applied:

  • low-carbon steel (up to 0.30%)
  • Medium and high carbon steel (up to 0.80%)
  • Various types of steel alloy

As previously stated, the final results of the process are highly variable and, depending on the type of material, can either increase a metalโ€™s resistance or pliability, or oppositely increase its ductility.

Before starting the process, it is therefore fundamental to analyse the metalโ€™s content and understand the final use of the produced object.

Send us a message with your requirements and we will help you find the right laser solution for you.

Marking fresh fruit products: a continuously growing trend!

The unstoppable growth of organic food sales seems to suggest that consumers are increasingly aware of genuine, natural, and environmental friendly fresh products. Organic food is realized in compliance with natural cycles, isnโ€™t treated chemically, and is environmental friendly.

The trend involves all aspects of the product: from the cultivation carried out according to natural principles, to the packaging – designed to be the least polluting possible. It is exactly this last aspect that has seen significant innovations during recent years due to the development of the laser technology.

Creating eco friendly packaging is a hot topic of discussion at the moment. The goal of CO2ย laser marking fresh fruit is not just reducing plastic consumption by replacing it with packaging materials such as recycled paper. The aim is – whenever possible, of course – to completely remove packing.

This is the direction some of the leading vegetable wholesalers are alreading moving to. Just look at ICA Gruppen, one of the worldโ€™s leading fruit and vegetable manufacturers. This company has already started adopting laser technology to replace traditional labeling methods. The label is directly laser-marked on the skin or peel of products. This simple transition translates into saving hundreds of kilos of paper and glue, resulting in an eco-friendly product.

But there is more: laser marking fresh fruit and vegetables also allows to improve the quality and genuineness of products. Several studies have shown that laser labelled products maintain the qualities of the original product. Laser marking is solely executed on the surface of the peel and only in order to change the pigmentation of the food. The entire process is carried out in compliance with maximum hygiene requirements, making the technique ideal for the food industry. Above all, with the laser technology, there is no need to use adhesives or other potentially harmful substances.

For this reason the laser labeling of fresh-fruit and vegetables is the ideal technique for every manufacturer of organic food products. A completely ecological product can only be realized by avoiding all use of plastic, paper, or adhesive materials in the labeling process. At the same time, by laser marking fresh fruits and vegetables, the traceability requirements of the distribution system stay respected.

The following are the main advantages of laser labeling fresh fruits and vegetables:

  • Offers the ability to mark an unlimited amount of simple and complex signs, including graphics and logos, codes of any type, as well as expiration dates and traceability codes
  • Laser marks are permanent, stable, non-abrasive, insoluble in water, resistant to temperature and UV rays. Laser engraved labels cannot drop coincidentally and cannot be altered
  • Laser marks are perfectly hygienic and therefore suitable for any type of food
  • Laser marking is an efficient, highly flexible and fully automated technology
  • Laser technology reduces the consumption of materials, and thus help saving economic resources
  • Laser technology is eco friendly as it avoids the use of chemicals that can be potentially harmful to the environment and human health

These are just a few of the many advantages of laser labeling. Over the years El.En. has experimented with several laser applications in diverse sectors of the food industry – such as the labeling of cheese and the application of traceability codes on apples. Applications of the laser technology are endless: contact us and we will discuss the CO2 laser labelling solution that suits your needs