CO2 laser lifetime

The CO2 laser has been on the market for many decades. Over the years it has proven to be a sturdy tool, capable of providing thousands of hours of processing without having to be serviced or replaced.

Unlike for mechanical production equipment, one of the biggest advantages of laser processing is low maintenance.

Mechanical tools operate by contact between parts and rely on moving mechanisms. The friction generated during machine operation makes wear and tear on this production equipment a pressing problem. Periodically, production has to be stopped in order to carry out the necessary maintenance operations, which increases the costs of operation and processing. The die sector is but one example of an industrial process that suffers from this problem. In this type of application, the dies have to be replaced periodically to guarantee the quality of the cut.

Laser, on the other hand, is a non-contact process. The entire laser system is based on the production and transmission of electronic pulses and the generation of polarised light beams. There are no moving parts or friction and therefore no direct impact on the lifetime of the laser source.

However, this does not mean that laser sources are maintenance-free. Laser sources also wear out, albeit much more slowly. This is why they need regular maintenance.

In the case of CO2 laser sources, the main problem is the rarefaction of the gas inside the laser tube. Year after year, the gas mixture is normally depleted, resulting in around a 1-2% emitted power decrease per year. This causes a gradual deterioration of the processing and a consequent decrease in efficiency.

The only solution to this problem is to periodically regenerate the laser source. However, this is a costly and time-consuming operation that usually involves stopping the production line, resulting in a negative impact on productivity.

El.En. has created a series of laser sources based on Self-Refilling technology to overcome this very problem. These sources, called Never Ending Power, avoid the regeneration of the source thanks to the use of a cylinder that contains the propagation medium. This cylinder can easily be replaced without causing any delays and guarantees the same process parameters and power over time.

This innovative recharging technology now makes it possible to have a laser source that always functions at maximum power. The laser beamโ€™s quality will consistently remain at its highest level and the lifespan of the laser source will practically be infinite. Contact us for more information!

What is laser cleaning?

Laser cleaning is the process of using lasers to remove dirt, debris or contaminants from the surface of an object. It is a process that lends itself to a variety of industrial and non-industrial applications. From cleaning thermoforming moulds to restoring monuments, there is no area where laser cleaning cannot be successfully applied.

In this article, we explain what the laser cleaning process consists of, the principle on which it is based and why it has an advantage over conventional cleaning methods.

Conventional cleaning methods

In the field of industrial production, the maintenance of production tools is essential, particularly in those areas where the quality of production depends on it. In the plastic thermoforming sector, for example, it is essential to always have clean moulds in order to obtain high quality parts. Rust, dust and material residues are among the most common types of dirt that need to be periodically removed.

However, cleaning operations are very costly in terms of resources. The actual performance depends on the type of maintenance required. But in general we can say that cleaning methods are based on the use of chemical or mechanical methods.

In the first case, cleaning is entrusted to solvents, detergents or other chemical compounds that degrade the material to be removed and facilitate its removal. In the second case, systems such as sandblasting or ultrasonic cleaning are used.

These cleaning methods have major disadvantages. They are very polluting because of their use of chemical products and require operators to take special safety precautions.

In addition, physical contact often causes damage to the workpiece which, in the long run, ends up being damaged by the cleaning operations.

Laser cleaning has established itself precisely because it has the advantage of overcoming the main drawbacks of traditional cleaning methods.

Laser cleaning and its advantages

Laser cleaning consists of irradiating the surface of a material in such a way as to remove the surface layer. The technique is based on ablation. The beam concentrated on the material breaks the molecular bonds of the material that needs to be removed. The material evaporates instantaneously with virtually no residue left behind.

Unlike conventional methods, there are no solvents or other additional chemical substances used in laser cleaning, and since it is a non-contact process, there is no abrasion that could damage the workpiece, as the surface dirt is removed without attacking the underlying material.

It is precisely this protection of the material that makes the laser so attractive. The laser allows you to operate selectively on a given material. The laser only removes materials that are absorbed by its wavelength. In addition, each material has different properties and needs a different amount of energy to be removed. This makes it possible to work on materials very precisely, to calibrate the laser extremely selectively so as not to damage the underlying material.

Flexibility, high controllability of the medium and speed are the characteristics that make laser cleaning an extremely effective tool.

Laser mold cleaning

Laser mold cleaning with CO2 laser

Laser cleaning is one of laserโ€™s many applications. The process is based on laser ablation, i.e. the removal of a portion of material from a surface. Ablation is at the basis of all common laser processes: cutting, drilling, engraving, marking.

While the purpose of these processes is to create cuts, holes or marks in the material, the aim of laser cleaning is to remove dirt particles from a given surface.

Laser cleaning of industrial moulds

The production process of thermoplastics is an example of an industrial laser cleaning application. The main production method for these materials is moulding. At the end of the production process, the moulds need to be restored to their original state. This step is crucial because the quality of the final part depends on it. The presence of material residues, or other debris, affects the final quality of the parts.

Traditionally, the cleaning process is carried out using one of three techniques: dry ice blasting, ultrasonic cleaning or manual cleaning. Each has both advantages and disadvantages.

Dry ice cleaning consists of directing a high pressure jet of dry ice onto the mould. The ice penetrates the mould cavities and removes residues. The operation is carried out by an operator who directs the jet onto the areas that need to be cleaned. The advantage of this technique is that it can be used directly in the production line. However, it is not an environmentally friendly method since it requires the use of large quantities of dry ice.

For ultrasonic cleaning, the mould is placed in special ultrasonic cleaning machines. In practice, this involves disassembling the part and immersing it in special tanks filled with solvent and water. In addition to the need to disassemble the mould, this method has the disadvantage of using polluting chemicals.

Manual cleaning consists of cleaning the moulds using a solvent and manual force. It is a slow and inefficient method.

Laser cleaning overcomes these disadvantages.

Firstly, it can be performed selectively: the laser only acts on materials that are compatible with its wavelength. Laser cleaning can therefore be used in sensitive applications where abrasion-based procedures such as sandblasting would be too invasive.

The absence of waste also makes it an environmentally friendly technique. Laser cleaning doesnโ€™t use solvents or other chemicals, doesnโ€™t produce any waste and also doesnโ€™t consume water or other resources. It is a thermodynamically efficient process. The laser vaporises the material by sublimation which makes it an environmentally friendly process.

Finally, laser cleaning is extremely precise. The process is completely digitally controlled which makes it possible to work on extremely small surfaces or follow extremely complex cleaning patterns. Unlike with traditional methods, it can clean hard-to-reach spaces and uneven surfaces.

A system tailored to your application

Laser cleaning is a versatile application. It is efficient, adaptable, precise and most importantly, ecological. El.En. is the ideal partner to create a tailor-made application for your production process. Contact us and we will be happy to help you find the best solution for your needs!

CO2 laser manufacturing of diamond abrasive tools

A diamond abrasive tool

The manufacturing process of abrasive materials has always been a productive challenge. The main problem is that the abrasive power of these materials also exerts itself on the production tools themselves, damaging them over a short period of time.

This results in very high maintenance costs for the tools. In addition, the fact that using precision tools is difficult makes it impossible to carry out precise machining on these materials.

The introduction of laser technology was therefore a major innovation, as it made it easier and cheaper to manufacture abrasive tools and materials:

  • Laser production processes are contactless. In laser processing, no mechanical forces are involved, unlike in traditional manufacturing processes. The interaction between the laser beam and the material produces a high energy density that removes a certain amount of material.
  • Laser technology enables a high degree of control over the production process. What does that mean? It is possible to set up the laser parameters, down to the smallest detail, in order to minimise the difference between the desired result and the result obtained. In other words, you can create a material with characteristics that are perfectly suited to its intended use.

Diamond abrasives

A few decades ago, diamond abrasives joined the ranks of traditional abrasives. These tools exploit diamondโ€™s exceptional hardness and thermal conductivity to achieve excellent abrasive performance.

Diamond is one of the hardest materials known to man. It also has excellent strength, good wear resistance and a low friction coefficient.

Diamond tools can be used in a wide range of applications:

  • geological prospecting
  • stone processing
  • construction
  • woodworking
  • tooling
  • ceramic processing

Diamond tools can be manufactured in various ways. Generally, synthetic diamonds are used, or diamonds judged to be of unsuitable quality for jewellery making.

To make tools, diamonds are combined with another bonding material so that, for example, tools can be made from metal, resin, ceramics, etc.

They can also be used for a wide range of purposes, including all traditional mechanical operations. These include cutting, drilling and, among other things, abrasive tools.

The manufacturing process for diamond abrasive tools comes with the same difficulties encountered in the production of conventional abrasive tools. However, it also has an added difficulty: the hardness of the diamond subjects the production equipment to even greater stress.

Here too, the CO2 laser can be an advantageous solution.

Diamond abrasives can be subjected to laser ablation processes using a continuous wave laser. This technique can create textures and other passive layer characteristics that enhance the performance of the material.

The process is especially effective on resin bonded abrasive materials. Resins and plastics in general absorb CO2 laser radiation very well and, therefore work very effectively for laser ablation processes.

A new application for the CO2 laser

Diamond is one of the hardest materials in existence, which makes the efficient production of these tools difficult and limits their widespread use. On the other hand, however, diamond abrasive tools offer enormous advantages and are crucial in certain applications. The introduction of laser machining processes has made their production more efficient and cost-effective, paving the way for their widespread use. Research in the field is still ongoing, bringing with it other possible applications in the future.

El.En. has been producing CO2 lasers for various industrial sectors for over 35 years. Experimentation, research and development in the field of lasers applied to materials is in our DNA. If you are thinking of making an application of this type, contact us and we will be happy to study the ideal solution for your needs.

Laser cutting of carbon fiber composite materials

Laser cutting carbon fiber composite materials

Composite materials are known for their extraordinary mechanical and physical properties. They are created by combining two different materials, resulting in a new material with better properties than their component materials taken individually.

Fiber reinforced polymers are some of the materials in the composite family that have found widespread use. These materials are manufactured by incorporating a fibre of some kind into a resin polymer matrix.

Fiberglass is one of the first materials to have been made in this way. Invented in the 1960s, it has now become an indispensable material for many sectors, particularly the nautical one. Today, there are other materials of this type such as aramid fibre also known as kevlar and carbon fibre reinforced plastics (CFRP).

Materials produced this way are light and resistant and at equal mass, are considerably more performant than other traditional materials such as wood or metal. They can also offer great plasticity which makes them easy to mould into any required shape. Thanks to these characteristics, composite materials are used for technologically advanced applications in sectors such as the nautical, aeronautical or automotive industries.

Carbon fibre reinforced plastics

CFRPs are perhaps the most advanced of all the composite materials,

To produce CFRP, a carbon fibre fabric is incorporated into a polymer matrix. The resulting product is extremely light and strong. At equal mass, it is 25% lighter than aluminium and 60% lighter than steel. This explains why it has found use in the aeronautical industry and in the sports competition sector for the construction of super light vehicles.

Once made, however, CFRP must be cut into the required shapes for their future function. Normally, this is done using mechanical methods. However, these have a major drawback. The strength of the carbon fibre quickly wears out the cutting tools, which therefore have to be replaced very frequently, making the process very costly.

Laser cutting technology is a valid alternative to the mechanical cutting of CFRPs. Both the carbon fibre and the polymers that make up its matrix absorb the 10.6 micrometre laser radiation produced by the carbon dioxide laser very well and can be cut very efficiently.

Cutting CFRP therefore has two main advantages:

  • a contactless process: it is possible to cut CFRP without the typical mechanical forces that wear out the cutting tool. This significantly lowers the production costs of each individual part.
  • very high tolerances: the laser can make cuts with very narrow angles and produce extremely precise parts very easily. This feature is crucial for advanced technological sectors where it is important to maximise the performance of a given component.

The material of the future

CFRP will become more and more popular over time. This material is of increasing importance and will spread to an ever wider range of sectors.

Finding a cheap and fast way to cut it into the most diverse shapes will become crucial. The CO2 laser is a viable alternative to the mechanical cutting methods currently used.

If you are considering a laser application to process carbon fibre, contact us: and we will design a customised application to suit your needs.