What is laser cleaning?

Laser cleaning is the process of using lasers to remove dirt, debris or contaminants from the surface of an object. It is a process that lends itself to a variety of industrial and non-industrial applications. From cleaning thermoforming moulds to restoring monuments, there is no area where laser cleaning cannot be successfully applied.

In this article, we explain what the laser cleaning process consists of, the principle on which it is based and why it has an advantage over conventional cleaning methods.

Conventional cleaning methods

In the field of industrial production, the maintenance of production tools is essential, particularly in those areas where the quality of production depends on it. In the plastic thermoforming sector, for example, it is essential to always have clean moulds in order to obtain high quality parts. Rust, dust and material residues are among the most common types of dirt that need to be periodically removed.

However, cleaning operations are very costly in terms of resources. The actual performance depends on the type of maintenance required. But in general we can say that cleaning methods are based on the use of chemical or mechanical methods.

In the first case, cleaning is entrusted to solvents, detergents or other chemical compounds that degrade the material to be removed and facilitate its removal. In the second case, systems such as sandblasting or ultrasonic cleaning are used.

These cleaning methods have major disadvantages. They are very polluting because of their use of chemical products and require operators to take special safety precautions.

In addition, physical contact often causes damage to the workpiece which, in the long run, ends up being damaged by the cleaning operations.

Laser cleaning has established itself precisely because it has the advantage of overcoming the main drawbacks of traditional cleaning methods.

Laser cleaning and its advantages

Laser cleaning consists of irradiating the surface of a material in such a way as to remove the surface layer. The technique is based on ablation. The beam concentrated on the material breaks the molecular bonds of the material that needs to be removed. The material evaporates instantaneously with virtually no residue left behind.

Unlike conventional methods, there are no solvents or other additional chemical substances used in laser cleaning, and since it is a non-contact process, there is no abrasion that could damage the workpiece, as the surface dirt is removed without attacking the underlying material.

It is precisely this protection of the material that makes the laser so attractive. The laser allows you to operate selectively on a given material. The laser only removes materials that are absorbed by its wavelength. In addition, each material has different properties and needs a different amount of energy to be removed. This makes it possible to work on materials very precisely, to calibrate the laser extremely selectively so as not to damage the underlying material.

Flexibility, high controllability of the medium and speed are the characteristics that make laser cleaning an extremely effective tool.

Laser cutting for fashion and textiles

The fashion industry is always looking for new ideas and new technology to make them possible. Laser has become an incredible tool for stylist and designers, enabling them bring even the most technically difficult ideas to light. The pioneer designers who made the first use of laser, often went on to become famous in the fashion world.

Rolls of fabric, ready to be laser cut

It is a known fact that originality takes the win in fashion.

Laser technology has changed the way fashion is designed and produced. Now, like most other sectors, textile manufacturers can use the techniques of digital production: fast prototyping, small scale productions, and the possibility to produce on demand.

When some processes could only be made by an experienced artisan, with laser cutting, they can now be made almost instantaneously and in a perfectly uniform and precise way.

Laser cutting for textiles in fashion

There are many materials used in fashion, most of which can be cut by laser. Though fabric is still the most popular material, acrylic polymers (used for fashion accessories and shoe making) is also commonly used by the fashion industry.

Here is a list of the most common materials that can be cut by laser:

  • fabric of natural or plant origin
  • wool
  • cotton
  • linen
  • synthetic fabric
  • polyester
  • nylon
  • elastan
  • fabric of animal origin
  • leather
  • silk
  • acrylic plastic
  • PMMA
  • wood
  • lace and crochet
  • thin metal decorations

The process

The laser beam is concentrated on a specific area of the material until it provoques immediate evaporation. This process, called sublimation, is instantaneous and produces precise and clean cuts.

Other effects can be obtained by varying the laser’s speed. Indeed, laser cutting isn’t the only possible operation. By using the same laser, one can obtain marking effects for decoration.

With laser cutting many special effects are achievable

The process is contactless so there is no risk of leaving unwanted traces on the material. This is particularly advantageous for delicate materials such as silk. This characteristic makes it possible to decrease or even eliminate wear and accidental damage during production, guaranteeing a better end product for sales.

The right technology to use

CO2 laser is by far the most popular in the fashion industry. It is powerful and versatile, and its wavelength is compatible with all the materials used in this field.

A laser system optimized for fabric cutting includes a CO2 laser source and a scanning head. Both are controlled by a software that manages their parameters according to the intended result.

The laser source’s job is to generate a laser beam. The types of laser power available range from low power CO2 lasers like El.En.’s RF88, to high power ones like El.En.’s Blade RF888. The choice of laser power will depend on what kind of production system the CO2 laser is inserted in: the higher the power, the faster the production will be.

Laser cutting is a very powerful tool in the hand of a designer

The scanning head’s job is to concentrate the laser on the surface and move it along the desired path.

The software is the ‘brain’ of the system: it translates the information contained in vector file produced by the designer in impulses for the scanning head and laser source.

The main advantage of such a system is that it can be completely automated: it can be integrated in pre-existing productive systems or take part in a system made especially for laser cutting.

Do you want a tailor-made application?

As previously explained, laser technology has a wide range of applications. The best way to know which application is right for you, and find the ideal configuration, is to talk to an expert. Send us an email to explain your requirements and we will find the best solution for you.

Laser labeling of food with laser marking

apples-laser-marking

What if producers and distributors of fruit and vegetables stop using sticky labels? It’s not phantasy but reality: with laser food labeling, labels can be written directly on the skin of a product by removing the superficial layers of the skin itself. An innovation beneficial for the environment and for the consumer. In this article we describe you this processing technique and we present you a case study where we describe how we created an automatic laser system for the labeling of apples. If you already know what natural branding is, you can jump to the case study.

First priority: reducing waste

Recent years have seen the development of a greater sensibility towards the environmental impact of the production processes. Manufacturers are trying to streamline the use of resources and materials, switching to greener ways of producing goods.

For the packaging sector this meant an overall reduction of the materials composing the packaging products: paperboard boxes, rolls of wrapping paper and plastic films are being supplanted by their biodegradable equivalents or they are simply being discarded.

Quite revealing of this trend is what happened to the most simple and traditional packaging product: labels.

Labels of fresh produce

CO2 laser labeling? That’s natural branding!

The phenomenon has been called “natural branding” and it especially concerns the packaging of fresh fruits and vegetables. Simply put, natural branding is to replace plain physical labels, sticked on the surface of fresh fruit and vegetables, with “natural” labels, obtained through laser marking.

This is only one of the many applications of CO2 lasers, a technology that demonstrates, again, to be a green process. In fact, producing a mark directly on the skin of produces results in reducing the consumption of materials such as paper and plastic and thus in a smaller environmental footprint of the packaging process. A CO2 laser let you engrave to engrave a lot of information: traceability codes, logo and brand of the producer, expiration dates. All this pieces of information were usually printed on traditional labels that were sticked on the surface of produces.

This laser labeling system is very advantageous for the whole packaging process and for the environment as well: a smaller energy consumption, the reduction of potentially polluting materials, a higher speed of execution. A perfect tool for all the manufacturers aiming at a greener production process.

But how can a CO2 laser engrave the surface of fresh fruit and vegetables?

Laser marking of food

Laser labeling of food is a special application of CO2 laser marking. In a previous article we have assessed the efficiency of laser marking on organic materials such as wood or leather. Even food can be marked without difficulty.

Broadly speaking, the process of laser marking relies on the high energy density delivered by a laser on the surface of a workpiece. It is that process that produces the desired marking on the surface.

An ordinary laser marking system is composed of three parts: a scanning head, a low power CO2 laser source and a computer equipped with the control software.

The scanning head contains three components: two galvo motors with two beryllium mirrors mounted on them; one linear actuator that dynamically adapt the focal length of a lens. The goal of this device is to deflect the laser beam and keep it always focused on the surface of the workpiece. Thanks to the laser scanning head the laser beam can be delivered on the entire surface of the workpiece.

Both the CO2 laser source and the scanning head are controlled by a software that, fed with the correct parameters, achieves the marking process of the desired design. In this way it is possible to control the speed, the position and the power of the laser beam, making it possible to obtain all types of images, logos, codes and markings.

A laser marking system can be adapted to many situations and it can be integrated in existing lines without effort.

The process of labeling trough CO2 laser marking is applicable to any sort of fruits and vegetables. Nevertheless, the best results are obtained with fruit and vegetables having a wooden or thin skin e.g. tomatoes, apples, grapefruits, walnuts, chestnuts, coconuts, pumpkins etc. In this sector it is possible to mark pieces of information such as produce traceability codes, expiration dates, logos of the producer and other personalized information.

The benefits obtained through natural branding are manifold:

  • Small amount of energy consumption: the CO2 laser systems employs very small amounts of energy to do the job, resulting in a reduction of costs.
  • No consumption of plastic, paper or glue: in CO2 laser labeling of food, labels are directly engraved on the surface of the product. Therefore the environmental footprint can be reduced to a minimum.
  • Cleanliness: with CO2 laser marking, the products don’t come into contact with chemical substances like glue. Hence the wholesomeness of the produce is enhanced.
  • Higher productivity: the laser marking process is very fast. Although the processing speed depends on the complexity of the information that must be engraved, in most situations the processing time ranges from fraction of seconds, for simple codes to a few seconds, for complex geometries.

At this stage it should be clear why laser labeling of fresh produces is also known as natural branding. It should also be clear how laser labeling is suitable for producers of organic or biological produces and, in general, for all the companies interested in improving their environmental footprint.

null

A case study: marking traceability codes on apples

Let’s see now how a CO2 laser labeling system has been applied to a line of selection and sorting of fresh produces, in this case apples.

This system was composed by a laser scanning head, a low power CO2 laser source with a wavelength of 10.6 micrometers and a computer with the software that controlled the entire process. The marking system was designed for the integration in the existing machine and was engineered to achieve laser marking of apples on the fly.

That means that the system was able to determine the position and the speed of each apple passing on the moving belt, thus synchronizing the behaviour of the laser beam with the position of the apples on the belt.

The system proved to be extremely fast: it could mark 6 apples per seconds. As we said this speed it’s not fixed but depends on the complexity of the results that need to be achieved.

The energy consumption of this system was of the lowest: the laser source in this applications consumed only 0,3 kW. Although it was designed for apples, this configurations of a laser labeling system can be extended to any typology of fresh fruit and vegetables and seamlessly integrated in existing production lines.

CO2 laser marked apples

A safe process that doesn’t affect the quality of produces

Laser labeling is a safe process. The marking only affects the most superficial layer of the skin of fresh produces; all the organoleptic properties of the food are respected. They are not modified in taste, color or smell. And the shelf life remains the same: some papers have also highlighted that laser marking never reduce the quality of produces.

The laser labeling of fresh products is an application yet to be explored. The possibilities are wide and let companies greatly improve their environmental footprint.

Laser mold cleaning

Laser mold cleaning with CO2 laser

Laser cleaning is one of laser’s many applications. The process is based on laser ablation, i.e. the removal of a portion of material from a surface. Ablation is at the basis of all common laser processes: cutting, drilling, engraving, marking.

While the purpose of these processes is to create cuts, holes or marks in the material, the aim of laser cleaning is to remove dirt particles from a given surface.

Laser cleaning of industrial moulds

The production process of thermoplastics is an example of an industrial laser cleaning application. The main production method for these materials is moulding. At the end of the production process, the moulds need to be restored to their original state. This step is crucial because the quality of the final part depends on it. The presence of material residues, or other debris, affects the final quality of the parts.

Traditionally, the cleaning process is carried out using one of three techniques: dry ice blasting, ultrasonic cleaning or manual cleaning. Each has both advantages and disadvantages.

Dry ice cleaning consists of directing a high pressure jet of dry ice onto the mould. The ice penetrates the mould cavities and removes residues. The operation is carried out by an operator who directs the jet onto the areas that need to be cleaned. The advantage of this technique is that it can be used directly in the production line. However, it is not an environmentally friendly method since it requires the use of large quantities of dry ice.

For ultrasonic cleaning, the mould is placed in special ultrasonic cleaning machines. In practice, this involves disassembling the part and immersing it in special tanks filled with solvent and water. In addition to the need to disassemble the mould, this method has the disadvantage of using polluting chemicals.

Manual cleaning consists of cleaning the moulds using a solvent and manual force. It is a slow and inefficient method.

Laser cleaning overcomes these disadvantages.

Firstly, it can be performed selectively: the laser only acts on materials that are compatible with its wavelength. Laser cleaning can therefore be used in sensitive applications where abrasion-based procedures such as sandblasting would be too invasive.

The absence of waste also makes it an environmentally friendly technique. Laser cleaning doesn’t use solvents or other chemicals, doesn’t produce any waste and also doesn’t consume water or other resources. It is a thermodynamically efficient process. The laser vaporises the material by sublimation which makes it an environmentally friendly process.

Finally, laser cleaning is extremely precise. The process is completely digitally controlled which makes it possible to work on extremely small surfaces or follow extremely complex cleaning patterns. Unlike with traditional methods, it can clean hard-to-reach spaces and uneven surfaces.

A system tailored to your application

Laser cleaning is a versatile application. It is efficient, adaptable, precise and most importantly, ecological. El.En. is the ideal partner to create a tailor-made application for your production process. Contact us and we will be happy to help you find the best solution for your needs!

Laser cutting polyester fabric

Polyester is the most common synthetic fibre used in the textile industry. Whether it be fashion, design, furniture making or decorations, there is no field in which polyester hasn’t found some application. Just open your closet and have a peak at the composition of your clothes. You will find that most are fully or in part made of polyester.

Label of polyester garment

The success of polyester is due to both its properties and low cost. Objects made in polyester are easy to clean, more resistant and need less upkeep. Since polyester isn’t made of natural fibres, the cost of farming the original plants doesn’t factor in. The fact that polyester can easily be treated with laser is yet another advantage.

Polyester absorbs the CO2 laser wavelength very well which makes any type of process possible. Finishing processes can be optimised, therefore reducing production costs.

This article explores the main characteristics and advantages of laser cutting of polyester fabric.

Polyester and its properties

Many thermoplastic polymers are included under the name polyester. The one most frequently used to produce clothes is made from polyethylene terephthalate. The fibres production process starts from the fusion of polyester pellets. The next step is the extrusion of the material. In other words the melted polyester is passed through a hole to create a continuous filament. This filament is then rolled around a spool of the desired length. This method allows for filaments of any shape and diameter. They in turn constitute the fibre from which fabric is made.

Polyester yarn on reel

Polyester fabric is long lasting, resistant, cheap, easy to clean, easy to dry and waterproof. These characteristics make it perfect for the production of all kinds of objects: clothing, footwear, interior design, car upholstery, camping equipment, etc… The impermeability of polyester can also be a disadvantage. It retains humidity and doesn’t have good breathability.

Laser applications on polyester

The characteristics of polyester fabric can be greatly improved by laser processing. As is the case for other thermoplastics, this synthetic fabric undergoes well both laser cuts and perforations.

Polyester, just like other synthetic plastics, absorbs the radiation of the laser beam very well. Out of all the thermoplastics, it’s the one that gives best results for both processing and lack of waste.

Laser cut on polyester fabric

Laser cutting of polyester offers many advantages over traditional cutting techniques. The cutting process works this way: the laser beam’s energy is concentrated on the fabric and heats the polyester fabric until it melts, creating a cut. The cut obtained is already sealed and therefore avoids the problem of fraying edges.

Waterproof blue polyester fabric

Other advantages are:

  • No production of waste
  • Extreme precision
  • Very clean process

The right laser sources to use

In order to get the best results, the wavelengths should be between 9.3 and 10.6 micrometers. Both types of wavelengths are in the infrared region, which is the typical region of the carbon dioxide laser. The choice of the laser source power will depend on the speed of production one wants to obtain. The higher the power of the laser source, the faster the production. In El.En’s catalogue, two types of laser sources are right for the laser cutting of polyester:

Blade RF 177G

A 150 W RF CO2 laser source, specially conceived for applications on thermoplastics. It’s 150 W power is perfect for most applications that include plastic materials.

Blade RF self-refilling

A multipurpose RF CO2 laser source that uses the self-refilling technology, developed by El.En. This laser source is available in different power options, and can reach up to 1200 W.

Laser cutting corrugated cardboard

corrugated-laser

Corrugated cardboard, also known as corrugated fiberbord or simply cardboard, is the most widely used packaging material. Its low production cost, great mechanical properties and an overall good strength make it perfect to manufacture cardboard boxes of all kind and shape.

Generally, corrugated cardboard is manufactured by a mechanical processes. Tools such as blades, die boards or routers are used to create the profile the overall shape and to score the lines along which the folds will we made.

Mechanical processes are solid and reliable and have a long history. Yet they also have some major drawbacks:

  • lack of flexibility toward changes
  • limited range of admitted tolerances
  • high risk of producing unwanted damage to the material
  • generation of waste under the form of trimmings or dust

Corrugated fiberboard cut with CO2 laser

Plus, all mechanical manufacturing processes involve contact, meaning that the tools have to physically touch the surface of the material to achieve the desired transformation.

Laser technologies can overcome all those drawbacks. Laser cutters can cut shapes at high speeds and with higher degree of precision. Let’s give a general overview of the process.

Cutting cardboard with laser

The main advantages of CO2 laser fabrication derive from the fact that laser technologies are a non-contact process.

A single laser laser beam can easily engrave, cut or drill a panel of corrugated cardboard. Thanks to the properties of cardboard, the results are great. The interaction between the laser beam and the material puts in place a sublimation process: it basically means that the laser beam makes the material evaporate, achieving a precise cut.

This is a key feature of laser material processing. First of all it allows great processing speed: all things being equal, a laser cutting system is many times faster than a die-cutting machine.

A laser can achieve the same operations at a speed of thousand of meters per minute. This without compromising the quality of the cut, which always remains excellent.

Another advantage of laser material processing is its flexibility. With traditional machining process, you cannot easily change the cutting geometry.

Changing the cutting shape comes with a cost: it means changing the cutting tool. A manufacturer can hardly start a new productionrun unless it guarantees a return on the investment.

Scoring made with CO2 laser on corrugated fiberboard

With laser material processing, changing a cutting geometry is way easier. It’s just a matter of minutes and only requires the time to load the drawing of the new geometry in the control software.

Also, a laser works like a multitool. Cutting and engraving can be accomplished with the same tool. A single laser source can perform both operations. Laser engraving is especially useful in the packaging industry, where codes of all kind need to be stamped on the packaging itself in order to comply with regulations or for logistical reasons.

This means that a CO2 laser cutting machine can conveniently process a batch of 5000 or 100.000 pieces cardboard panels of different shape.

Laser technologies can help a packaging produce meet the needs for custom products with small number of pieces. They also make possible the rapid prototyping approach for new packaging products.

A third advantage of laser technologies for cardboard manufacturing is that they don’t produce almost any waste. Laser processing is very clean: cuts and other processes are achieved without producing any scrapes, dust or other waste product, allowing for green production and better work environment.

Boxes made out of corrugated fiberboard

The lack of those waste products means that the cuts obtained are of the best quality: a CO2 laser produces cuts with smooth and compact surfaces. Unlike mechanical fabrication, it does not affect the fibers of cardboard and paper: therefore the material structure remains untouched, resulting in a reduced possibilities of damaging the material.

Mechanical methods are subject to wear. The use of worn out tools reduce the quality of the product: that’s why the tools have to be periodically replaced or repaired. Those operations slow down the production process resulting, increasing the production costs. On the opposite, a laser will always be a sharp cutting tool, thus always allowing the best quality of the process.

So can you laser cut cardboard?

The answer is yes, you can. And you should. Laser technologies are the perfect tool for cutting and engraving corrugated cardboard. The laser is a fast, flexible and green tool. It allows a manufacturer to satisfy all the requests of customers: a characteristic that is essential for a company operating in the economy dominated by the paradigm of the long tail. Customers are now looking for a different approach, where the priority is given to tailor made products and respect for the environment.

A new approach requires new tools, more flexible and accurate. The tools that let manufacturers control their costs without sacrificing quality the quality are the tools of the future.

Basically, an industry based on mechanical machining was typical of an era and for a market where manufacturers marketed their products and customers were obliged to pick from what the market had to offer.

Contact us

Do you need to cut or engrave cardboard at an industrial scale and you think that laser could be a good option? Contact us: we have a long experience in designing and manufacturing a wide range of laser systems for cutting and engraving corrugated cardboard.

CO2 laser manufacturing of diamond abrasive tools

A diamond abrasive tool

The manufacturing process of abrasive materials has always been a productive challenge. The main problem is that the abrasive power of these materials also exerts itself on the production tools themselves, damaging them over a short period of time.

This results in very high maintenance costs for the tools. In addition, the fact that using precision tools is difficult makes it impossible to carry out precise machining on these materials.

The introduction of laser technology was therefore a major innovation, as it made it easier and cheaper to manufacture abrasive tools and materials:

  • Laser production processes are contactless. In laser processing, no mechanical forces are involved, unlike in traditional manufacturing processes. The interaction between the laser beam and the material produces a high energy density that removes a certain amount of material.
  • Laser technology enables a high degree of control over the production process. What does that mean? It is possible to set up the laser parameters, down to the smallest detail, in order to minimise the difference between the desired result and the result obtained. In other words, you can create a material with characteristics that are perfectly suited to its intended use.

Diamond abrasives

A few decades ago, diamond abrasives joined the ranks of traditional abrasives. These tools exploit diamond’s exceptional hardness and thermal conductivity to achieve excellent abrasive performance.

Diamond is one of the hardest materials known to man. It also has excellent strength, good wear resistance and a low friction coefficient.

Diamond tools can be used in a wide range of applications:

  • geological prospecting
  • stone processing
  • construction
  • woodworking
  • tooling
  • ceramic processing

Diamond tools can be manufactured in various ways. Generally, synthetic diamonds are used, or diamonds judged to be of unsuitable quality for jewellery making.

To make tools, diamonds are combined with another bonding material so that, for example, tools can be made from metal, resin, ceramics, etc.

They can also be used for a wide range of purposes, including all traditional mechanical operations. These include cutting, drilling and, among other things, abrasive tools.

The manufacturing process for diamond abrasive tools comes with the same difficulties encountered in the production of conventional abrasive tools. However, it also has an added difficulty: the hardness of the diamond subjects the production equipment to even greater stress.

Here too, the CO2 laser can be an advantageous solution.

Diamond abrasives can be subjected to laser ablation processes using a continuous wave laser. This technique can create textures and other passive layer characteristics that enhance the performance of the material.

The process is especially effective on resin bonded abrasive materials. Resins and plastics in general absorb CO2 laser radiation very well and, therefore work very effectively for laser ablation processes.

A new application for the CO2 laser

Diamond is one of the hardest materials in existence, which makes the efficient production of these tools difficult and limits their widespread use. On the other hand, however, diamond abrasive tools offer enormous advantages and are crucial in certain applications. The introduction of laser machining processes has made their production more efficient and cost-effective, paving the way for their widespread use. Research in the field is still ongoing, bringing with it other possible applications in the future.

El.En. has been producing CO2 lasers for various industrial sectors for over 35 years. Experimentation, research and development in the field of lasers applied to materials is in our DNA. If you are thinking of making an application of this type, contact us and we will be happy to study the ideal solution for your needs.

How accurate is CO2 laser cutting?

The answer is a lot! The ability to make cuts with very close tolerances, down to a fraction of a millimeter, is one of the main advantages of laser cutting. In fact, laser is not subjected to the mechanical limits of traditional cutting tools. How accurate is CO₂ Laser?

Laser cutting of fabric | How accurate is CO₂ laser

The characteristics of the material impose intrinsic limitations to cutting mechanisms such as blades and hollow cutters. A blade, for example, must respect certain minimum dimensions to work properly. These dimensions mean that the blade cannot perform certain types of cuts such as very narrow ones.

Laser, on the other hand, does not have any of these drawbacks as it is composed of a polarized light beam focused on a very tiny spot. A CO₂ laser scanning head, such as AZSCAN S35, can focus a beam with a diameter ranging between 140 and 450 micrometers on a surface. Just to put things into perspective, a human hair is about 70 micrometers!

Laser cut on paper | How accurate is CO₂ laser

The fact that in laser technology there is no contact with the surface and the working dimensions are so small, makes it very easy to achieve extremely complex cutting geometries.

Also, laser cutting works well with all types of materials, from rigid ones, such as multilayer wood, to fragile ones, such as plastic film. They can all be processed easily and accurately, minimizing the risk of breakage and waste of material.

Laser cutting of fabric | How accurate is CO₂ laser

In addition to the previously mentioned advantages, laser also offers extreme controllability of parameters and a high speed of execution. All these elements combine to make CO₂ laser an incredibly powerful working tool. Flexibility, speed and accuracy open up infinite possibilities, especially for sectors such as packaging and fashion, which rely on creativity. Contact us if you wish to know more!

Laser cutting of carbon fiber composite materials

Laser cutting carbon fiber composite materials

Composite materials are known for their extraordinary mechanical and physical properties. They are created by combining two different materials, resulting in a new material with better properties than their component materials taken individually.

Fiber reinforced polymers are some of the materials in the composite family that have found widespread use. These materials are manufactured by incorporating a fibre of some kind into a resin polymer matrix.

Fiberglass is one of the first materials to have been made in this way. Invented in the 1960s, it has now become an indispensable material for many sectors, particularly the nautical one. Today, there are other materials of this type such as aramid fibre also known as kevlar and carbon fibre reinforced plastics (CFRP).

Materials produced this way are light and resistant and at equal mass, are considerably more performant than other traditional materials such as wood or metal. They can also offer great plasticity which makes them easy to mould into any required shape. Thanks to these characteristics, composite materials are used for technologically advanced applications in sectors such as the nautical, aeronautical or automotive industries.

Carbon fibre reinforced plastics

CFRPs are perhaps the most advanced of all the composite materials,

To produce CFRP, a carbon fibre fabric is incorporated into a polymer matrix. The resulting product is extremely light and strong. At equal mass, it is 25% lighter than aluminium and 60% lighter than steel. This explains why it has found use in the aeronautical industry and in the sports competition sector for the construction of super light vehicles.

Once made, however, CFRP must be cut into the required shapes for their future function. Normally, this is done using mechanical methods. However, these have a major drawback. The strength of the carbon fibre quickly wears out the cutting tools, which therefore have to be replaced very frequently, making the process very costly.

Laser cutting technology is a valid alternative to the mechanical cutting of CFRPs. Both the carbon fibre and the polymers that make up its matrix absorb the 10.6 micrometre laser radiation produced by the carbon dioxide laser very well and can be cut very efficiently.

Cutting CFRP therefore has two main advantages:

  • a contactless process: it is possible to cut CFRP without the typical mechanical forces that wear out the cutting tool. This significantly lowers the production costs of each individual part.
  • very high tolerances: the laser can make cuts with very narrow angles and produce extremely precise parts very easily. This feature is crucial for advanced technological sectors where it is important to maximise the performance of a given component.

The material of the future

CFRP will become more and more popular over time. This material is of increasing importance and will spread to an ever wider range of sectors.

Finding a cheap and fast way to cut it into the most diverse shapes will become crucial. The CO2 laser is a viable alternative to the mechanical cutting methods currently used.

If you are considering a laser application to process carbon fibre, contact us: and we will design a customised application to suit your needs.

What is CO2 laser used for?

CO2 laser is one of the technologies that boasts the largest variety of uses. The areas of application range from the medical sector to the restoration of monuments. Whether it is applied to skin resurfacing or eliminating writing from ancient walls, CO2 laser is an incredibly efficient and cost effective tool.

CO2 laser for the manufacturing of signs and displays

But it is in the industrial sector that CO2 laser truly shines. The high spectrum purity, high stability, energy efficiency, the possibility of multiple power options, ranging from a few to a thousands watts, are all characteristics that have determined its success in the processing of materials and made it reach high levels of quality.

The packaging industry

CO2 laser is now an indispensable production tool for the packaging industry. The materials used (plastics, cardboard, wood and derivatives) and the characteristics of this sector’s typical processes (research of personalization, continuous innovation) are extremely compatible with the use of CO2 laser, which widens exponentially its possible applications.

An example is the production of fresh produce bags using laser microperforation. The laser microperforation makes it possible to optimize the exchange of gas between the inside of the bag and the surrounding environment, which, in turn, makes it possible to extend the product’s shelf life.

Laser is used for paper processing in the packaging industry

One of the latest applications of CO2 laser is the so-called natural branding. This recently developed application consists of marking the label directly on fresh produce’s surface. Information such as logos, tracking information and production batch can be directly visible on the products.

This information is traditionally printed on labels, which are then pasted onto the product. Laser labeling of fresh produce allows to avoid this step, thus eliminating the need for glue and other chemicals. This application is very effective and doesn’t damage the quality or durability of the product in any way.

Laser technology can also greatly enhance more traditional processes.

One example is the laser welding of plastic bags. This type of flexible packaging is increasingly used to save on space and create packaging adapted to different types of products. Laser welding can also be used for flexible packaging. This process uses laser energy to heat the material and thus seal the bag.

The second application is laser engraving of flexible bags. This application uses the extreme controllability of laser technology to create depth-controlled incisions on the plastic material. With this technique, it is possible to create easy-to-open packaging or innovative packaging for ready-to-use products.

The fashion and interior decoration industry

Carbon dioxide laser is used in the field of fashion and interior design. CO2 laser can become a powerful creative tool in the hands of architects and designers. It is also an environmentally sustainable tool which significantly reduces the ecological impact of the textile industry.

Laser marking, microperforation and cutting are the main operations used in this field.

Laser marking is mainly used to engrave decorative patterns on fabrics and leather. The great advantages of CO2 laser are high manufacturing speeds, precision, elevated repeatability of impression and the possibility to engrave any type of geometric pattern or design.

Laser drilling of leather finds many applications

Laser marking also finds innovative applications in the field of textiles. One example is the use of laser marking of denim fabric. It is now possible to laser wash jeans. This method significantly reduces the consumption of chemicals and water.

The laser decoration of ceramic tiles is another CO2 laser applications for the interior design world.

Again, the main advantage of this laser is the almost infinite range of motifs that can be transferred onto the tile’s surface (from simple geometric motifs to real black and white photographs).

The food industry

Industries use laser to engrave label on fresh fruit and vegetables

The food industry recently discovered how useful the carbon dioxide laser can be. In these applications, laser is used to carry out work directly on the product’s surface, thus replacing the use of mechanical devices. Some examples of these CO2 applications are fruit and vegetable laser peeling, laser marking of codes on eggshells, laser engraving of cheeses and cured meats.

Digital converting

Laser technology fits perfectly into a digital manufacturing process. Indeed, the CO2 laser’s characteristics are best appreciated when it is inserted in highly automated processes.

CO2 laser can cut intricate shapes out of a paper box

An example of a successful application is paper processing. Thanks to laser technology, it is possible to create integrated systems capable of printing, punching and cutting paper into a desired size. All kinds of details and customizations can also be added with laser which would be impossible to do when relying on the mechanical methods traditionally used in this sector.

Laser is also ideal for the production of security paper. Codes, perforations, cuts and other identification marks can be added quickly and easily.

Tool industry

Laser heat treating of metal strenthen the surface of parts subject to wear

The production of tools and tooling in general can greatly benefit from the use of laser. In the case of laser surface hardening treatments, the metal surface is exposed to the effects of the laser beam, causing an internal transformation of its molecular structure which increases the wear resistance of the tool.

Panel industry

Extreme controllability is one of the strengths of laser processing. For the signage industry this aspect translates into a huge advantage. The CO2 laser makes it possible to engrave writings, logos or other information with extreme precision and high definition on the most commonly used materials for panels and signs such as plexiglass, steel or aluminum. Laser technology also makes customizations easy.

Display industry

Acrylic laser cutting is one of the areas in which CO2 laser is unbeatable. The paneling industry has benefited greatly from the use of CO2 laser. Laser is in fact indispensable in the manufacture of LGP Backlight panels.

These are PMMA panels which are perforated at regular intervals using laser. The panel, thus prepared, is then illuminated by LEDs which, suitably positioned, create a uniformly illuminated surface. The main advantage of these displays is that it is possible to create large backlit panels with very low energy consumption.

Laser technology is indispensable to this type of manufacturing because holes can be drilled with a precision and regularity that would be extremely difficult and expensive to obtain using traditional production methods.

Automotive industry

CO2 laser is perfect for cutting plastics in the automotive sector

Some of the most common CO2 applications in the automotive sector are decorations of plastics, surface hardening of metals, microperforation of leather for interiors, decoration of upholstery, welding, engraving of codes for the identification and traceability of parts, etc.

In fact, this industrial sector was one of the first to introduce the use of laser in its manufacturing processes. It is therefore no surprise that the CO2 laser is so widely used.

One laser, multiple uses

Ultimately, CO2 laser has an almost infinite range of uses. Its wavelength makes it suitable for the processing of most materials. Contact us for more information: there might a laser solution to your problem.