Laser digital converting for food packaging

pepperoni-plastic-bag

The change in consumer behavior has augmented the demand for ready-to-use food. This, in turn, has resulted in the demand for different packaging types. The food technology industry has developed along and adapted in concordance with these behavioral changes, offering increasingly advanced food packaging. Consumers no longer want to be confined to plastic bags or containers, but want packaging types that are practical in use, easy to open, and that donโ€™t require the use of additional tools. On top of this, consumers demand packaging types that do not sacrifice the freshness of food, which is a current priority to the ever-demanding consumer of today. The shift in the packaging industry is easily visible by solely walking around in the local supermarket. From ready-to-use salad to instant noodles, packaging has changed. All of this has resulted in the need to make customized packaging.

The challenges of packaging are not trivial. Traditional methods of processing and finishing of cellulose and flexible packaging are less practical in todayโ€™s market. The market has shifted from a time where general packaging suited each product, to a market where each product requires its particular packaging type. Due to this shift, traditional packaging processes have become disadvantaged. Traditional packaging involves mechanical machining; tools for cutting, engraving, and imprinting are used for mass production. Due to this, the packaging quantity has to be augmented in order to cover costs. This traditional packaging process limits flexibility and adaptivity, solely serving the mass packaging market.

Today, however, the market is much more segmented and demanding. The winning producer is the one who is able to best adapt to consumer demands and provide real added value to their products. This is a real change of paradigm, made possible by the establishment of digital production processes.

The laser is the protagonist of this change. Laser Technologies have been established in recent years as an indispensable instrument in the processing industry of cellulose and plastic packaging. Agile, accurate, and reliable, the laser is a non-contact process that is based on software control to achieve maximum precision in machining.

Laser technology is incredibly versatile: not only provides it the possibility to perform work in a more efficient way, it also makes it possible to perform tasks that were not previously possible with traditional machining. The laser allows you to personalize packaging in any way preferred. These technologies have opened up new possibilities in the packaging world.

Letโ€™s have a look at some of the possibilities offered by the laser.

Laser engraving

Laser engraving consists of engraving a layer of plastic material. This technique is ideal for making packaging with an “easy opening”. Easy opening bags are those where the opening is engraved: the consumer only has to pull slightly in order to open the packaging material. This processing would be very difficult to obtain and costly with traditional methods. Thanks to the laser control software it is possible to accurately set the laser parameters to obtain the desired cut depth.

Laser micro perforation

Laser micro perforation involves drilling micro holes in the plastic film. Micro perforation is used in food packaging utilizing controlled atmospheres. Laser micro perforation allows you to obtain holes of any desired size, thus enabling modified atmosphere packaging. The holes are perforated precisely in the preferred size, to ensure correct gas exchange between the inside and outside environment of the packaging, thus extending the durability and freshness of these products. Traditional methods of micro-perforation did not allow this process to be controlled accurately. Thanks to the laser, modified atmosphere packaging has been made possible, guaranteeing an expanded and improved product-lifespan.

Laser cut

Laser cutting is used to cut plastic materials from side to side. The laser cut is suitable for creating very precise details, even when cutting on small surfaces. Holes for filtering, plastic containers with special shapes or openings can be made easily and quickly thanks to laser cutting. Traditional cutting tools do not allow these complex or high precision cuts.

A flexible and easy-to-integrate tool

Laser features have revolutionized the way in which packaging is understood. Thanks to the laser, it is possible to adhere perfectly to customer requirements, providing products with real added value. These characteristics enable producers to tackle the most recent challenges in the industry.

All of this can be reached using minimum effort: to install Laser System El.En. it is not necessary to revolutionize existing lines. Our CO2 laser is compact and easily modulated for all your needs. The laser can be easily inserted into systems and adapted to the existing features. No mechanical system can ever be as fast as the laser. As a matter of fact, inserting a laser into a production line avoids bottlenecks that are often represented during the finishing process.

Laser micro-perforation of plastic bags for fresh products

micro-perforation-plastic-film

One of the characteristics of CO2 lasers is that it allows you to carry out processes which were impossible to perform beforehand, because of technical limitations in the past.

The CO2 laser has introduced new possibilities that have been exploited to meet market demands. One of these advantages is, for example, the laser micro perforation of plastic film. This technique has proven to be very useful for the packaging of fresh products before distributing them to mass retailers.

Micro perforated bags with laser for the packaging of fresh products

Laser microperforation is one of the newest methods to create micro holes in the packaging materials of products. To do this, the CO2 laser is used in pulsed mode. Unlike continuous mode, the pulsed mode sends high-intensity light flashes on the packaging material.

Laser micro perforation is particularly important for the packaging industry of fresh products. An increase in the demand of ready to consume fruit and vegetables, distributed via mass retailers, has led to the development of new strategies to ensure product freshness. Controlling storage temperature and modifying the atmospheric conditions within the packaging of products are the two most important factors for the quality of fresh products. The packaging thus has an important role in maintaining the freshness of the product, as it works as a regulator between the interior and exteriorย environment.

Laser micro perforation allows you to optimize the conservation of these products, through an improvement of the product packaging.

Objective: to improve the breathability of plastic bags

The packaging materials of fresh products in controlled atmosphereย are often seen in the form of plastic bags. These bags allow optimal isolation of the products, and seal them perfectly from external contamination of molds or bacteria.

But there is a disadvantage: the breathability of these materials. Plastic film is a material that limits gas transmission with the exterior atmosphere. For a proper preservation of fresh products this is a significant disadvantage, as fresh products are subject to metabolic changes such as breathing, exchanging gases with the exterior atmosphere, and producing gas from chemical processes that take place within the fresh produce.

To improve the shelf life of a product, a continuous gas transmission between the interior and exterior atmosphere of the packaging is required. The levels of oxygen and carbon dioxide, play a big role in the conservation of the product. For this reason plastic bags must be perforated, in order to facilitate a proper gas flow between the internal and external environments. The amount of gas transmission required, however, differs from product to product. For this reason the perforation process must be properly adaptedย to the product needs. This aspect of adapting the perforation process, however, is difficult to achieve with traditional perforation methods.

Traditional micro perforation processes of plastic bags

Traditionally, the perforation of plastic bags is performed through two types of mechanical processes:

  • Heated or unheated needles: the plastic film is perforated by needles applied with or without heat. This process, though inexpensive, is slow. In addition, the holes produced have a larger diameter and can let contaminants, such as bacteria and mold, in. It is therefore not suitable for contaminant-sensitive products.
  • Electric discharge: packaging bags can also be perforated by means of electric discharge. The plastic film is passed through a high electrostatic voltage in which sparks are led through the packaging film to create micro holes. This process, even though faster than the previous one, is hard to manage. The hole parameters can not easily be checked. It is therefore unsuitable for those products that require precisely controlled gas transmission.

Laser Micro Perforation: accuracy in the service of the product

The machine that generates the best results in terms of micro perforating bags, turns out to be the CO2 laser. Micro perforation with the CO2 laser makes it possible to control the drilling process very accurately and obtain high quality results.

The CO2 laser is very well absorbed by most polymers and thermoplastics. The controlling software makes it possible to set the parameters to obtain holes of the required size and density, that let you create the optimum environment for gas transmission.

A laser micro perforation machine has the following advanta

Laser Marking For Cheese and Ham

marking-cheese

Laser labeling of food is a recent innovation that makes it possible to reduce production waste by replacing traditional food labels with laser engraved labels. Laser marking of food is suitable for companies wanting to optimize their production process, saving resources and materials while also decreasing their ecological footprint. The possibilities are endless.

In fact, an increasing number of companies have realized that laser techniques are the key to process innovation. In a recent article we discussed the growing phenomena of natural branding, a process in which traditional food labels are replaced by the laser marking of the skin of food.

Fresh products such as fruits and vegetables can easily be markedย through a laser scanning head, a low power CO2 laser source and a software that controls the process. This procedure of laser marking permits us to imprint logos, barcodes, and any type of information on different types of food without affecting their quality. The marking does not affect the organoleptic properties of the food – it is a โ€œfriendly processโ€ as it only affects the most superficial layer of the skin of fresh products.

Pumpkins: ideal for natural branding

However, fruits and vegetables are not the only types of food that can be marked with the CO2 laser technology. Results have shown that even seasoned and semi-seasoned cheese and hams can be marked.

A case study: machine designed to mark seasoned and semi-seasoned cheese.

These seasoned and semi-seasoned products have always been marked through heat methods. Products are marked with their brand and codes that establishes the batch of production, identify the producer, allow to trace back the origin of the product. The easiest system to mark food is to use a metal to impress a brand by burning the surface of the product.

This traditional method, while being inexpensive, is incredibly slow and inflexible. In order to change the codes to be imprinted, a change in the marking tool is needed.

Laser marking of cheese

A more efficient way of imprinting information on food is to use the CO2 laser application. The laser allows to mark the surface of these products faster, with higher precision, and in a more secure way. In comparison to traditional ways of marking food, such as marking through means of heat, laser marking allows us to have an extremely precise process: it provides the possibility to adapt all parameters involved to suit the characteristics of the product to be marked. In this way the process of laser marking becomes the more precise way as it respects the unique characteristics of each product.

A system for marking the dairy products may consist of the following elements:

  • Completely washable stainless steel structure
  • Conveyer belt
  • CO2 laser source
  • High performance laser scanning head
  • Controlling software

The functioning is semi-automated. The system involves the presence of an operator placing the products to be marked on the conveyer belt. The conveyer belt transports the products to the laser processing space, isolated from the outside with doors that can be opened for inspection and sanitation reasons. Here the laser scanning head, controlled by a software, guides the laser beam on the surface of the product, performing the marking within seconds. In a few minutes only, the operator is able to perform the same operation dozens of times.

The advantage of such a system is its flexibility. First of all, the machine is designed to be modular: each module can be replicated and adapted to the needs of the manufacturer. For example, you can install different laser sources for different applications.

Furthermore, the system allows you to change the information you want to mark very quickly. You just have to modify the parameters inserted in the control software to perform a different process.

Laser labeling of food with laser marking

apples-laser-marking

What if producers and distributors of fruit and vegetables stop using sticky labels? It’s not phantasy but reality: with laser food labeling, labels can be written directly on the skin of a product by removing the superficial layers of the skin itself. An innovationย beneficial for the environment and for the consumer. In this article we describe you this processing technique and we present you a case studyย where we describe how we created an automatic laser system for the labeling of apples. If you already know what natural branding is, you can jump to the case study.

First priority: reducing waste

Recent years have seen the development of a greater sensibility towards the environmental impact of the production processes. Manufacturers are trying to streamline the use of resources and materials, switching to greener ways of producing goods.

For the packaging sector this meant an overall reduction of the materials composing the packaging products: paperboard boxes, rolls of wrapping paper and plastic films are being supplanted by their biodegradable equivalents or they are simply being discarded.

Quite revealing of this trend is what happened to the most simple and traditional packaging product: labels.

Labels of fresh produce

CO2 laser labeling? That’s natural branding!

The phenomenon has been called โ€œnatural brandingโ€ and it especially concerns the packaging of fresh fruits and vegetables. Simply put, natural branding is to replace plain physical labels, sticked on the surface of fresh fruit and vegetables, with โ€œnaturalโ€ labels, obtained through laser marking.

This is only one of the many applications of CO2 lasers, a technologyย that demonstrates, again, to be a green process. In fact, producing a mark directly on the skin of produces results in reducing the consumption of materials such as paper and plastic and thus in a smaller environmental footprint of the packaging process. A CO2 laser let you engrave to engrave a lot of information: traceability codes, logo and brand of the producer, expiration dates. All this pieces of information were usually printed on traditional labels that were sticked on the surface of produces.

This laser labeling system is very advantageous for the whole packaging process and for the environment as well: a smaller energy consumption, the reduction of potentially polluting materials, a higher speed of execution. A perfect tool for all the manufacturers aiming at a greener production process.

But how can a CO2 laser engrave the surface of fresh fruit and vegetables?

Laser marking of food

Laser labeling of food is a special application of CO2 laser marking. In a previous article we have assessed the efficiency of laser marking on organic materials such as wood or leather. Even food can be marked without difficulty.

Broadly speaking, the process of laser marking relies on the high energy density delivered by a laser on the surface of a workpiece. It is that process that produces the desired marking on the surface.

An ordinary laser marking system is composed of three parts: a scanning head, a low power CO2 laser source and a computer equipped with the control software.

The scanning head contains three components: two galvo motors with two beryllium mirrors mounted on them; one linear actuator that dynamically adapt the focal length of a lens. The goal of this device is to deflect the laser beam and keep it always focused on the surface of the workpiece. Thanks to the laser scanning head the laser beam can be delivered on the entire surface of the workpiece.

Both the CO2 laser source and the scanning head are controlled by a software that, fed with the correct parameters, achieves the marking process of the desired design. In this way it is possible to control the speed, the position and the power of the laser beam, making it possible to obtain all types of images, logos, codes and markings.

A laser marking system can be adapted to many situations and it can be integrated in existing lines without effort.

The process of labeling trough CO2 laser marking is applicable to any sort of fruits and vegetables. Nevertheless, the best results are obtained with fruit and vegetables having a wooden or thin skin e.g. tomatoes, apples, grapefruits, walnuts, chestnuts, coconuts, pumpkins etc. In this sector it is possible to mark pieces of information such as produce traceability codes, expiration dates, logos of the producer and other personalized information.

The benefits obtained through natural branding are manifold:

  • Small amount of energy consumption: the CO2 laser systems employs very small amounts of energy to do the job, resulting in a reduction of costs.
  • No consumption of plastic, paper or glue: in CO2 laser labeling of food, labels are directly engraved on the surface of the product. Therefore the environmental footprint can be reduced to a minimum.
  • Cleanliness: with CO2 laser marking, the products donโ€™t come into contact with chemical substances like glue. Hence the wholesomeness of the produce is enhanced.
  • Higher productivity: the laser marking process is very fast. Although the processing speed depends on the complexity of the information that must be engraved, in most situations the processing time ranges fromย fraction of seconds, for simple codes to a few seconds, for complex geometries.

At this stage it should be clear why laser labeling of fresh produces is also known as natural branding. It should also be clear how laser labeling is suitable for producers of organic or biological produces and, in general, for all the companies interested in improving their environmental footprint.

null

A case study: marking traceability codes on apples

Letโ€™s see now how a CO2 laser labeling system has been applied to a line of selection and sorting of fresh produces, in this case apples.

This system was composed by a laser scanning head, a low power CO2 laser source with a wavelength of 10.6 micrometers and a computer with the software that controlled the entire process. The marking system was designed for the integration in the existing machine and was engineered to achieve laser marking of apples on the fly.

That means that the system was able to determine the position and the speed of each apple passing on the moving belt, thus synchronizing the behaviour of the laser beam with the position of the apples on the belt.

The system proved to be extremely fast: it could mark 6 apples per seconds. As we said this speed itโ€™s not fixed but depends on the complexity of the results that need to be achieved.

The energy consumption of this system was of the lowest: the laser source in this applications consumed only 0,3 kW. Although it was designed for apples, this configurations of a laser labeling system can be extended to any typology of fresh fruit and vegetables and seamlessly integrated in existing production lines.

CO2 laser marked apples

A safe process that doesnโ€™t affect the quality of produces

Laser labeling is a safe process. The marking only affects the most superficial layer of the skin of fresh produces; all the organoleptic properties of the food are respected. They are not modified in taste, color or smell. And the shelf life remains the same: some papers have also highlighted that laser marking never reduce the quality of produces.

The laser labeling of fresh products is an application yet to be explored. The possibilities are wide and let companies greatly improve their environmental footprint.

Laser cutting corrugated cardboard

corrugated-laser

Corrugated cardboard, also known as corrugated fiberbord or simply cardboard, is the most widely used packaging material. Its low production cost, great mechanical properties and an overall good strength make it perfect to manufacture cardboard boxes of all kind and shape.

Generally, corrugated cardboard is manufactured by a mechanical processes. Tools such as blades, die boards or routers are used to create the profile the overall shape and to score the lines along which the folds will we made.

Mechanical processes are solid and reliable and have a long history. Yet they also have some major drawbacks:

  • lack of flexibility toward changes
  • limited range of admitted tolerances
  • high risk of producing unwanted damage to the material
  • generation of waste under the form of trimmings or dust

Corrugated fiberboard cut with CO2 laser

Plus, all mechanical manufacturing processes involve contact, meaning that the tools have to physically touch the surface of the material to achieve the desired transformation.

Laser technologies can overcome all those drawbacks. Laser cutters can cut shapes at high speeds and with higher degree of precision. Letโ€™s give a general overview of the process.

Cutting cardboard with laser

The main advantages of CO2 laser fabrication derive from the fact that laser technologies are a non-contact process.

A single laser laser beam can easily engrave, cut or drill a panel of corrugated cardboard. Thanks to the properties of cardboard, the results are great. The interaction between the laser beam and the material puts in place a sublimation process: it basically means that the laser beam makes the material evaporate, achieving a precise cut.

This is a key feature of laser material processing. First of all it allows great processing speed: all things being equal, a laser cutting system is many times faster than a die-cutting machine.

A laser can achieve the same operations at a speed of thousand of meters per minute. This without compromising the quality of the cut, which always remains excellent.

Another advantage of laser material processing is its flexibility. With traditional machining process, you cannot easily change the cutting geometry.

Changing the cutting shape comes with a cost: it means changing the cutting tool. A manufacturer can hardly start a new productionrun unless it guarantees a return on the investment.

Scoring made with CO2 laser on corrugated fiberboard

With laser material processing, changing a cutting geometry is way easier. Itโ€™s just a matter of minutes and only requires the time to load the drawing of the new geometry in the control software.

Also, a laser works like a multitool. Cutting and engraving can be accomplished with the same tool. A single laser source can perform both operations. Laser engraving is especially useful in the packaging industry, where codes of all kind need to be stamped on the packaging itself in order to comply with regulations or for logistical reasons.

This means that a CO2 laser cutting machine can conveniently process a batch of 5000 or 100.000 pieces cardboard panels of different shape.

Laser technologies can help a packaging produce meet the needs for custom products with small number of pieces. They also make possible the rapid prototyping approach for new packaging products.

A third advantage of laser technologies for cardboard manufacturing is that they donโ€™t produce almost any waste. Laser processing is very clean: cuts and other processes are achieved without producing any scrapes, dust or other waste product, allowing for green production and better work environment.

Boxes made out of corrugated fiberboard

The lack of those waste products means that the cuts obtained are of the best quality: a CO2 laser produces cuts with smooth and compact surfaces. Unlike mechanical fabrication, it does not affect the fibers of cardboard and paper: therefore the material structure remains untouched, resulting in a reduced possibilities of damaging the material.

Mechanical methods are subject to wear. The use of worn out tools reduce the quality of the product: thatโ€™s why the tools have to be periodically replaced or repaired. Those operations slow down the production process resulting, increasing the production costs. On the opposite, a laser will always be a sharp cutting tool, thus always allowing the best quality of the process.

So can you laser cut cardboard?

The answer is yes, you can. And you should. Laser technologies are the perfect tool for cutting and engraving corrugated cardboard. The laser is a fast, flexible and green tool. It allows a manufacturer to satisfy all the requests of customers: a characteristic that is essential for a company operating in the economy dominated by the paradigm of the long tail. Customers are now looking for a different approach, where the priority is given to tailor made products and respect for the environment.

A new approach requires new tools, more flexible and accurate. The tools that let manufacturers control their costs without sacrificing quality the quality are the tools of the future.

Basically, an industry based on mechanical machining was typical of an era and for a market where manufacturers marketed their products and customers were obliged to pick from what the market had to offer.

Contact us

Do you need to cut or engrave cardboard at an industrial scale and you think that laser could be a good option? Contact us: we have a long experience in designing and manufacturing a wide range of laser systems for cutting and engraving corrugated cardboard.

Peeling fruit with laser technology

group of chestnuts on a wooden table

Peeling fruit and vegetables using laser technology? It is possibile. And it is only one of the many applications of the CO2 laser for the food industry. Because of its wavelength, the CO2 laser allows you to efficiently process materials of organic origin.

The fast technological advance of the last few years have made the use of laser in the food industry now possible. El.En has been one of the first CO2 laser producers to study and experiment on its possible uses in the food industry. Laser technology can be used for cheese or cured meat marking, chestnut incisions, biostimulation, etc.

In this article we will describe another laser processing technique: the laser peeling of fresh fruit and vegetables.

How the processing mechanism works

The laser peeling process consists in using a focused laser beam to remove the skin of the produce. This is possible thanks to the elevated energy density that the laser manages to concentrate on a very small area. The process causes the immediate disappearance of a layer of material.

The thickness of the removed layer is very thin and essentially depends on the chosen parameters for the laser. Usually this layer corresponds to a few microns. This means that even if the energy and pressure would be very high, they concentrate on a tiny part of the organic material. Consequently, the zone affected by the laser is scarce and very focused, which is very important for the processing of food products. The result is that the organoleptic properties of food, such as flavor, freshness, texture and color, are in no way modified by the laserโ€™s action.

Onions, peppers, tomatoes, oranges and lemons are only a few of the fresh produce that can be exposed to this type of laser treatment.

Laser peeling equipment

From a technical standpoint, the configuration of this type of system mainly requires a CO2 laser source, a laser scanning head and a control software. The advantage of this type of system is that even with a low power CO2 laser source, you can obtain great results. In general terms, the higher the laser power, the faster the operation and therefore the productivity of the system.

The process is based on the laser scanning of the product to be treated. By carefully regulating the parameters of speed and laser power, it is possible to configure the laser with extreme accuracy according to the results you want to obtain.

Contact us

Our company specializes in the use of laser for food processing. We can build a solution that works for your needs. If you think that laser peeling could be useful for your business, all you have to do di contact us!

CO2 laser glass marking – CO2 laser and glass

Glass is one of the many materials that can undergo CO2 laser treatments. Laser is most often used for markings or cuts. In this article, we will explore how compatible glass is with laser technology and its possible applications.

A glass with laser marking

Glass composition

Glass is a material of natural origin, composed mostly of silica (SiO2). The material is heated until it reaches melting point and then left to resolidify. This process yields glass, a transparent material with a great resistance to corrosion.

Glass does have some defects, though. It is fragile and has a low resistance to thermal expansion.

Glass object with markings on it

Types of laserable glass

It is important to take its negative characteristics into consideration before applying laser technology to glass. Its type of composition and production will be deciding factors when choosing where to use laser.

Composition

Most of the glass available on the market isnโ€™t composed solely of silica. Depending on the glassโ€™ final use, other components are added to the silica to modify the materialโ€™s properties.

Adding substances to the material does alter its โ€˜laserabilityโ€™. For example, laser technology cannot be used when metal has been added to glass. Crystal is part of this category of glass. In order to increase transparency, lead is added to the composition, thus making it incompatible with laser.

A laser decorated glass with opaque finishing

Production

Most glass is produced industrially. Nonetheless, one can still find productions of artisanal glass objects; obviously at a higher price.

The first type of glass has a more uniform structure which makes it a better candidate for laser applications. Artisanal glass, on the other hand, isnโ€™t as easy to use with laser. The glass can contain structural and compositional inconsistencies like microfractures. This glass could easily crack when exposed to the heat generated by the laser.

How laser technology works on glass

Though laser applications usually work by sublimation for most materials, in the case of glass, the process is different. As previously mentioned, glass has a low tolerance for thermal expansion. Laser technology takes advantage of this characteristic by generating fractures at a microscopic level. These result in markings or cuts.

How does this process take place? Glass contains trapped microbubbles of air. When the laser touches upon the surface, it heats it and causes the dilatation of these bubbles. Due to the materialโ€™s lack of flexibility, this dilatation generates the aforementioned micro-fractures.

Various decorated glasses for champagne

CO2 laser markings on glass

Laser marking is the most common technique applied to glass. It is usually used for decorations or the marking of codes and other information.

Productions using laser have many advantages compared to traditional methods. They are cleaner, cheaper and offer a much wider range of applications.

Markings can be done in different ways, depending on the type of glass.

Soda glass

Soda glass is the most common form of glass. It is used for windows, bottles, glass flatware and other commonly used glass objects. It works well with laser technology.

On this type of glass, markings are made by generating thousands of microfractures on the glassโ€™s surface. Thermal shock causes the dilatation of the glass, which, due to its rigid nature, fractures at a microscopic level. The final result is an opaque marking with a satin finish. It looks very similar to results obtained using more traditional methods, but at a much lower price.

Examples of this process can be found in the decoration field (decoration of glasses and flatware, windows and cabinets), in the car industry (identifying codes markings on car windshields and windows), in the production of glassware for laboratories (measurement markings).

Quartz glass

Quartz glass is obtained from the fusion of quartz rather than silica. It has a high resistance to heat, great optic transmissibility and a high resistance to corrosion.

CO2 laser markings on quartz glass are done through superficial fusion. The materialโ€™s fusion modifies the reticular structure of glass making light refract differently on the markings compared to the rest of the surface.

Boro-silicate glass

Boro-silicate glass, known commercially as Pyrex, is obtained by adding boron and other composites to the silica. The chemical reaction produces a glass that is highly resistant to thermal expansion. It is usually used for the production of flatware and oven trays.

Boro-silicate can undergo CO2 laser markings.

Contact us for more information on laser marking of glass.

CO2 Laser for security paper

The packaging and paper goods industry are the sectors which have most benefited from the introduction of the CO2 laser. This tool has triggered innovations in applications, production methods and in products.

Security paper | CO2 laser and security paper
Most of the laserโ€™s benefits are due to the fact that it is a contactless tool. As opposed to traditional methods, lasers can follow a complex cutting path and allows for a much more flexible production. It can be used for complex applications and guarantees extreme precision at a high production speed.

Laser applications for security paper

Its precision and flexibility make laser technology perfectly suited for government issued paper and security paper.

Government issued paper and security paper have a number of inbuilt tricks to avoid being counterfeited and guarantee their originality. Security paper is usually employed by state or government agencies in the production of goods such as:

  • official documents
  • I.Ds
  • bank documents
  • checks
  • banknotes
  • shares
  • certificates
  • visas
  • government stamps
  • passports

In order to avoid tampering or counterfeiting there are many possible devices which include:

  • watermarks
  • security thread
  • surface treatments
  • holograms
  • security windows

Each company has its own particular applications and patents. The producers of security paper constantly strive to make their product more innovative and tamper proof.

Laser technology makes some necessary applications to prevent counterfeiting possible. The fact that lasers can perform cuts at a controlled depth and follow complex processing paths make them ideal tools for this sector.

Co2 laser and security paper

Kiss cutting, laser marking, perforation and laser etching are some of the possible applications. Letโ€™s take a look at them, one by one.

Laser kiss cutting

This application is often used in the production of stickers. Kiss cutting consists of a very light cut on a piece of paper. Unlike normal laser cutting, the cut doesnโ€™t go through the paper. It makes it possible to separate the sticker from the matrix, allowing the user to remove only the sticker. It is perfect for the production of government issued paper such as revenue stamps or postage stamps.

Laser scoring

Laser scoring is used to create folding lines on a piece of paper. The process is very similar to laser kiss cutting. Laser technology offers great control over all parameters. This makes it easy to decide the depth of the incision. The scoring, for instance, can be used to prevent the reuse of stickers or stamps. As soon as they are unstuck, they become irreversibly destroyed.

Laser drilling

Laser drilling is used to make little holes on a material. These perforations can have varying diameters and even reach microscopic levels. The drilling of indelible alphanumeric codes is one of its possible applications. The code becomes an intrinsic part of the document. Passports, for example, have serial codes inserted inside them.

Laser engraving

In laser engraving (a subset of laser marking applications), the beam is used to remove a superficial layer of material. This layer can have different depths and configurations. The engraved shapes can vary greatly from logos to alphanumeric codes, from symbols to images and all are indelible. Laser engraving can be performed on paper but also on other materials such as plastic. Plastic I.D cards are an example of this.

Laser cutting polyester fabric

Polyester is the most common synthetic fibre used in the textile industry. Whether it be fashion, design, furniture making or decorations, there is no field in which polyester hasnโ€™t found some application. Just open your closet and have a peak at the composition of your clothes. You will find that most are fully or in part made of polyester.

Label of polyester garment

The success of polyester is due to both its properties and low cost. Objects made in polyester are easy to clean, more resistant and need less upkeep. Since polyester isnโ€™t made of natural fibres, the cost of farming the original plants doesnโ€™t factor in. The fact that polyester can easily be treated with laser is yet another advantage.

Polyester absorbs the CO2 laser wavelength very well which makes any type of process possible. Finishing processes can be optimised, therefore reducing production costs.

This article explores the main characteristics and advantages of laser cutting of polyester fabric.

Polyester and its properties

Many thermoplastic polymers are included under the name polyester. The one most frequently used to produce clothes is made from polyethylene terephthalate. The fibres production process starts from the fusion of polyester pellets. The next step is the extrusion of the material. In other words the melted polyester is passed through a hole to create a continuous filament. This filament is then rolled around a spool of the desired length. This method allows for filaments of any shape and diameter. They in turn constitute the fibre from which fabric is made.

Polyester yarn on reel

Polyester fabric is long lasting, resistant, cheap, easy to clean, easy to dry and waterproof. These characteristics make it perfect for the production of all kinds of objects: clothing, footwear, interior design, car upholstery, camping equipment, etcโ€ฆ The impermeability of polyester can also be a disadvantage. It retains humidity and doesnโ€™t have good breathability.

Laser applications on polyester

The characteristics of polyester fabric can be greatly improved by laser processing. As is the case for other thermoplastics, this synthetic fabric undergoes well both laser cuts and perforations.

Polyester, just like other synthetic plastics, absorbs the radiation of the laser beam very well. Out of all the thermoplastics, itโ€™s the one that gives best results for both processing and lack of waste.

Laser cut on polyester fabric

Laser cutting of polyester offers many advantages over traditional cutting techniques. The cutting process works this way: the laser beamโ€™s energy is concentrated on the fabric and heats the polyester fabric until it melts, creating a cut. The cut obtained is already sealed and therefore avoids the problem of fraying edges.

Waterproof blue polyester fabric

Other advantages are:

  • No production of waste
  • Extreme precision
  • Very clean process

The right laser sources to use

In order to get the best results, the wavelengths should be between 9.3 and 10.6 micrometers. Both types of wavelengths are in the infrared region, which is the typical region of the carbon dioxide laser. The choice of the laser source power will depend on the speed of production one wants to obtain. The higher the power of the laser source, the faster the production. In El.Enโ€™s catalogue, two types of laser sources are right for the laser cutting of polyester:

Blade RF 177G

A 150 W RF CO2 laser source, specially conceived for applications on thermoplastics. Itโ€™s 150 W power is perfect for most applications that include plastic materials.

Blade RF self-refilling

A multipurpose RF CO2 laser source that uses the self-refilling technology, developed by El.En. This laser source is available in different power options, and can reach up to 1200 W.

How accurate is CO2 laser cutting?

The answer is a lot! The ability to make cuts with very close tolerances, down to a fraction of a millimeter, is one of the main advantages of laser cutting. In fact, laser is not subjected to the mechanical limits of traditional cutting tools. How accurate is COโ‚‚ Laser?

Laser cutting of fabric | How accurate is COโ‚‚ laser

The characteristics of the material impose intrinsic limitations to cutting mechanisms such as blades and hollow cutters. A blade, for example, must respect certain minimum dimensions to work properly. These dimensions mean that the blade cannot perform certain types of cuts such as very narrow ones.

Laser, on the other hand, does not have any of these drawbacks as it is composed of a polarized light beam focused on a very tiny spot. A COโ‚‚ laser scanning head, such as AZSCAN S35, can focus a beam with a diameter ranging between 140 and 450 micrometers on a surface. Just to put things into perspective, a human hair is about 70 micrometers!

Laser cut on paper | How accurate is COโ‚‚ laser

The fact that in laser technology there is no contact with the surface and the working dimensions are so small, makes it very easy to achieve extremely complex cutting geometries.

Also, laser cutting works well with all types of materials, from rigid ones, such as multilayer wood, to fragile ones, such as plastic film. They can all be processed easily and accurately, minimizing the risk of breakage and waste of material.

Laser cutting of fabric | How accurate is COโ‚‚ laser

In addition to the previously mentioned advantages, laser also offers extreme controllability of parameters and a high speed of execution. All these elements combine to make COโ‚‚ laser an incredibly powerful working tool. Flexibility, speed and accuracy open up infinite possibilities, especially for sectors such as packaging and fashion, which rely on creativity. Contact us if you wish to know more!