CO2 laser manufacturing of diamond abrasive tools

A diamond abrasive tool

The manufacturing process of abrasive materials has always been a productive challenge. The main problem is that the abrasive power of these materials also exerts itself on the production tools themselves, damaging them over a short period of time.

This results in very high maintenance costs for the tools. In addition, the fact that using precision tools is difficult makes it impossible to carry out precise machining on these materials.

The introduction of laser technology was therefore a major innovation, as it made it easier and cheaper to manufacture abrasive tools and materials:

  • Laser production processes are contactless. In laser processing, no mechanical forces are involved, unlike in traditional manufacturing processes. The interaction between the laser beam and the material produces a high energy density that removes a certain amount of material.
  • Laser technology enables a high degree of control over the production process. What does that mean? It is possible to set up the laser parameters, down to the smallest detail, in order to minimise the difference between the desired result and the result obtained. In other words, you can create a material with characteristics that are perfectly suited to its intended use.

Diamond abrasives

A few decades ago, diamond abrasives joined the ranks of traditional abrasives. These tools exploit diamondโ€™s exceptional hardness and thermal conductivity to achieve excellent abrasive performance.

Diamond is one of the hardest materials known to man. It also has excellent strength, good wear resistance and a low friction coefficient.

Diamond tools can be used in a wide range of applications:

  • geological prospecting
  • stone processing
  • construction
  • woodworking
  • tooling
  • ceramic processing

Diamond tools can be manufactured in various ways. Generally, synthetic diamonds are used, or diamonds judged to be of unsuitable quality for jewellery making.

To make tools, diamonds are combined with another bonding material so that, for example, tools can be made from metal, resin, ceramics, etc.

They can also be used for a wide range of purposes, including all traditional mechanical operations. These include cutting, drilling and, among other things, abrasive tools.

The manufacturing process for diamond abrasive tools comes with the same difficulties encountered in the production of conventional abrasive tools. However, it also has an added difficulty: the hardness of the diamond subjects the production equipment to even greater stress.

Here too, the CO2 laser can be an advantageous solution.

Diamond abrasives can be subjected to laser ablation processes using a continuous wave laser. This technique can create textures and other passive layer characteristics that enhance the performance of the material.

The process is especially effective on resin bonded abrasive materials. Resins and plastics in general absorb CO2 laser radiation very well and, therefore work very effectively for laser ablation processes.

A new application for the CO2 laser

Diamond is one of the hardest materials in existence, which makes the efficient production of these tools difficult and limits their widespread use. On the other hand, however, diamond abrasive tools offer enormous advantages and are crucial in certain applications. The introduction of laser machining processes has made their production more efficient and cost-effective, paving the way for their widespread use. Research in the field is still ongoing, bringing with it other possible applications in the future.

El.En. has been producing CO2 lasers for various industrial sectors for over 35 years. Experimentation, research and development in the field of lasers applied to materials is in our DNA. If you are thinking of making an application of this type, contact us and we will be happy to study the ideal solution for your needs.

How accurate is CO2 laser cutting?

The answer is a lot! The ability to make cuts with very close tolerances, down to a fraction of a millimeter, is one of the main advantages of laser cutting. In fact, laser is not subjected to the mechanical limits of traditional cutting tools. How accurate is COโ‚‚ Laser?

Laser cutting of fabric | How accurate is COโ‚‚ laser

The characteristics of the material impose intrinsic limitations to cutting mechanisms such as blades and hollow cutters. A blade, for example, must respect certain minimum dimensions to work properly. These dimensions mean that the blade cannot perform certain types of cuts such as very narrow ones.

Laser, on the other hand, does not have any of these drawbacks as it is composed of a polarized light beam focused on a very tiny spot. A COโ‚‚ laser scanning head, such as AZSCAN S35, can focus a beam with a diameter ranging between 140 and 450 micrometers on a surface. Just to put things into perspective, a human hair is about 70 micrometers!

Laser cut on paper | How accurate is COโ‚‚ laser

The fact that in laser technology there is no contact with the surface and the working dimensions are so small, makes it very easy to achieve extremely complex cutting geometries.

Also, laser cutting works well with all types of materials, from rigid ones, such as multilayer wood, to fragile ones, such as plastic film. They can all be processed easily and accurately, minimizing the risk of breakage and waste of material.

Laser cutting of fabric | How accurate is COโ‚‚ laser

In addition to the previously mentioned advantages, laser also offers extreme controllability of parameters and a high speed of execution. All these elements combine to make COโ‚‚ laser an incredibly powerful working tool. Flexibility, speed and accuracy open up infinite possibilities, especially for sectors such as packaging and fashion, which rely on creativity. Contact us if you wish to know more!

Laser cutting of carbon fiber composite materials

Laser cutting carbon fiber composite materials

Composite materials are known for their extraordinary mechanical and physical properties. They are created by combining two different materials, resulting in a new material with better properties than their component materials taken individually.

Fiber reinforced polymers are some of the materials in the composite family that have found widespread use. These materials are manufactured by incorporating a fibre of some kind into a resin polymer matrix.

Fiberglass is one of the first materials to have been made in this way. Invented in the 1960s, it has now become an indispensable material for many sectors, particularly the nautical one. Today, there are other materials of this type such as aramid fibre also known as kevlar and carbon fibre reinforced plastics (CFRP).

Materials produced this way are light and resistant and at equal mass, are considerably more performant than other traditional materials such as wood or metal. They can also offer great plasticity which makes them easy to mould into any required shape. Thanks to these characteristics, composite materials are used for technologically advanced applications in sectors such as the nautical, aeronautical or automotive industries.

Carbon fibre reinforced plastics

CFRPs are perhaps the most advanced of all the composite materials,

To produce CFRP, a carbon fibre fabric is incorporated into a polymer matrix. The resulting product is extremely light and strong. At equal mass, it is 25% lighter than aluminium and 60% lighter than steel. This explains why it has found use in the aeronautical industry and in the sports competition sector for the construction of super light vehicles.

Once made, however, CFRP must be cut into the required shapes for their future function. Normally, this is done using mechanical methods. However, these have a major drawback. The strength of the carbon fibre quickly wears out the cutting tools, which therefore have to be replaced very frequently, making the process very costly.

Laser cutting technology is a valid alternative to the mechanical cutting of CFRPs. Both the carbon fibre and the polymers that make up its matrix absorb the 10.6 micrometre laser radiation produced by the carbon dioxide laser very well and can be cut very efficiently.

Cutting CFRP therefore has two main advantages:

  • a contactless process: it is possible to cut CFRP without the typical mechanical forces that wear out the cutting tool. This significantly lowers the production costs of each individual part.
  • very high tolerances: the laser can make cuts with very narrow angles and produce extremely precise parts very easily. This feature is crucial for advanced technological sectors where it is important to maximise the performance of a given component.

The material of the future

CFRP will become more and more popular over time. This material is of increasing importance and will spread to an ever wider range of sectors.

Finding a cheap and fast way to cut it into the most diverse shapes will become crucial. The CO2 laser is a viable alternative to the mechanical cutting methods currently used.

If you are considering a laser application to process carbon fibre, contact us: and we will design a customised application to suit your needs.

What is CO2 laser used for?

CO2 laser is one of the technologies that boasts the largest variety of uses. The areas of application range from the medical sector to the restoration of monuments. Whether it is applied to skin resurfacing or eliminating writing from ancient walls, CO2 laser is an incredibly efficient and cost effective tool.

CO2 laser for the manufacturing of signs and displays

But it is in the industrial sector that CO2 laser truly shines. The high spectrum purity, high stability, energy efficiency, the possibility of multiple power options, ranging from a few to a thousands watts, are all characteristics that have determined its success in the processing of materials and made it reach high levels of quality.

The packaging industry

CO2 laser is now an indispensable production tool for the packaging industry. The materials used (plastics, cardboard, wood and derivatives) and the characteristics of this sectorโ€™s typical processes (research of personalization, continuous innovation) are extremely compatible with the use of CO2 laser, which widens exponentially its possible applications.

An example is the production of fresh produce bags using laser microperforation. The laser microperforation makes it possible to optimize the exchange of gas between the inside of the bag and the surrounding environment, which, in turn, makes it possible to extend the productโ€™s shelf life.

Laser is used for paper processing in the packaging industry

One of the latest applications of CO2 laser is the so-called natural branding. This recently developed application consists of marking the label directly on fresh produceโ€™s surface. Information such as logos, tracking information and production batch can be directly visible on the products.

This information is traditionally printed on labels, which are then pasted onto the product. Laser labeling of fresh produce allows to avoid this step, thus eliminating the need for glue and other chemicals. This application is very effective and doesnโ€™t damage the quality or durability of the product in any way.

Laser technology can also greatly enhance more traditional processes.

One example is the laser welding of plastic bags. This type of flexible packaging is increasingly used to save on space and create packaging adapted to different types of products. Laser welding can also be used for flexible packaging. This process uses laser energy to heat the material and thus seal the bag.

The second application is laser engraving of flexible bags. This application uses the extreme controllability of laser technology to create depth-controlled incisions on the plastic material. With this technique, it is possible to create easy-to-open packaging or innovative packaging for ready-to-use products.

The fashion and interior decoration industry

Carbon dioxide laser is used in the field of fashion and interior design. CO2 laser can become a powerful creative tool in the hands of architects and designers. It is also an environmentally sustainable tool which significantly reduces the ecological impact of the textile industry.

Laser marking, microperforation and cutting are the main operations used in this field.

Laser marking is mainly used to engrave decorative patterns on fabrics and leather. The great advantages of CO2 laser are high manufacturing speeds, precision, elevated repeatability of impression and the possibility to engrave any type of geometric pattern or design.

Laser drilling of leather finds many applications

Laser marking also finds innovative applications in the field of textiles. One example is the use of laser marking of denim fabric. It is now possible to laser wash jeans. This method significantly reduces the consumption of chemicals and water.

The laser decoration of ceramic tiles is another CO2 laser applications for the interior design world.

Again, the main advantage of this laser is the almost infinite range of motifs that can be transferred onto the tileโ€™s surface (from simple geometric motifs to real black and white photographs).

The food industry

Industries use laser to engrave label on fresh fruit and vegetables

The food industry recently discovered how useful the carbon dioxide laser can be. In these applications, laser is used to carry out work directly on the productโ€™s surface, thus replacing the use of mechanical devices. Some examples of these CO2 applications are fruit and vegetable laser peeling, laser marking of codes on eggshells, laser engraving of cheeses and cured meats.

Digital converting

Laser technology fits perfectly into a digital manufacturing process. Indeed, the CO2 laserโ€™s characteristics are best appreciated when it is inserted in highly automated processes.

CO2 laser can cut intricate shapes out of a paper box

An example of a successful application is paper processing. Thanks to laser technology, it is possible to create integrated systems capable of printing, punching and cutting paper into a desired size. All kinds of details and customizations can also be added with laser which would be impossible to do when relying on the mechanical methods traditionally used in this sector.

Laser is also ideal for the production of security paper. Codes, perforations, cuts and other identification marks can be added quickly and easily.

Tool industry

Laser heat treating of metal strenthen the surface of parts subject to wear

The production of tools and tooling in general can greatly benefit from the use of laser. In the case of laser surface hardening treatments, the metal surface is exposed to the effects of the laser beam, causing an internal transformation of its molecular structure which increases the wear resistance of the tool.

Panel industry

Extreme controllability is one of the strengths of laser processing. For the signage industry this aspect translates into a huge advantage. The CO2 laser makes it possible to engrave writings, logos or other information with extreme precision and high definition on the most commonly used materials for panels and signs such as plexiglass, steel or aluminum. Laser technology also makes customizations easy.

Display industry

Acrylic laserย cutting is one of the areas in which CO2 laser is unbeatable. The paneling industry has benefited greatly from the use of CO2 laser. Laser is in fact indispensable in the manufacture of LGP Backlight panels.

These are PMMA panels which are perforated at regular intervals using laser. The panel, thus prepared, is then illuminated by LEDs which, suitably positioned, create a uniformly illuminated surface. The main advantage of these displays is that it is possible to create large backlit panels with very low energy consumption.

Laser technology is indispensable to this type of manufacturing because holes can be drilled with a precision and regularity that would be extremely difficult and expensive to obtain using traditional production methods.

Automotive industry

CO2 laser is perfect for cutting plastics in the automotive sector

Some of the most common CO2 applications in the automotive sector are decorations of plastics, surface hardening of metals, microperforation of leather for interiors, decoration of upholstery, welding, engraving of codes for the identification and traceability of parts, etc.

In fact, this industrial sector was one of the first to introduce the use of laser in its manufacturing processes. It is therefore no surprise that the CO2 laser is so widely used.

One laser, multiple uses

Ultimately, CO2 laser has an almost infinite range of uses. Its wavelength makes it suitable for the processing of most materials. Contact us for more information: there might a laser solution to your problem.

Paper digital converting

Paper processing is one of the main areas of application for the CO2 laser. The world of paper converting has benefited greatly from the spread this tool. The CO2 laser offers speed, efficiency and flexibility, allowing laser companies to meet the demands of an increasingly fragmented market.

Laser production processes also fit in perfectly with the digital printing processes that now dominate the converting industry.ย This is a sector that we know well at El.En. Over the years we have helped many companies introduce laser technology into their production processes. We have created numerous systems for paper processing, particularly for companies operating in the packaging sector.

Based on our experience, we will use this article to give an overview of laser applications for paper converting.

Laser and paper

Paper is part of our everyday life. There is no task or business that does not make use of some kind of paper material.

When we talk about paper, we include a wide range of materials. However, the various types of paper have a similar composition. At a microscopic level, a sheet of paper consists of a network of interwoven cellulose fibres, a filler, usually kaolin, and various chemicals derived from the manufacturing process.

The chemical structure of paper lends itself well to CO2 laser cutting. When the laser interacts with the cellulose, it dissolves its molecular structure, reducing the material to its basic components carbon, oxygen and hydrogen.

This processing system is very advantageous as it solves the main drawbacks of traditional paper cutting tools.

First of all, the laser offers flexibility. One of the methods for cutting paper is using dies. Each die can only be used to cut one shape. In order to obtain a new shape, a new cutting die must be created. This places a limit on how much work a company can accept: if the production batch isnโ€™t big enough to pay back the cost of the new die, it becomes economically disadvantageous to produce it.

Laser technology, on the other hand, is much more flexible because the entire cutting system is digitally controlled by software. Modifying the shape that needs to be cut simply requires software intervention. This makes it economically viable to process small production batches.

Mechanical cutting has another drawback. The use of blades is another method used to cut paper. This cutting mechanism produces dust and residues that are not compatible with modern digital printing processes, which are now predominant. This means that it is necessary to separate the printing and cutting phases.

Laser cutting processes, on the other hand, produce very little residue and are therefore compatible with digital printing processes. What’s more, laser technology is a completely digital process. It can therefore easily be used in integrated systems that can perform all the production processes required by the converting industry in a single step.

Another problem with mechanical systems is that they cannot achieve consistent high quality cuts. Blades carry the risk of creating irregular or poor quality cuts. Many applications, particularly in the packaging sector, require extremely precise cuts. Containers for liquid food products, for example, need to have perfectly sealed edges (i.e. where there are no loose, protruding fibres). Laser cutting achieves these results because heat seals the edges during the cutting process.

On the basis of what we have previously stated, the use of lasers is advantageous in situations where the use of mechanical cutting is not economically viable. Here are some examples:

  • need for high quality and precision cuts
  • production volumes of less than 1000 pieces
  • need to create integrated digital printing and cutting production systems
  • need to eliminate waste due to the high cost of production equipment
  • execution of bespoke work
  • execution of particularly complex cuts

Some paper laser cutting applications

It would be difficult to make a complete list of laser applications for paper, especially since many of these processes used to be carried out with mechanical cutting equipment. However, laser technology has made it possible to perform processes that used to be impossible or very difficult to do very easily.

One example of this is partial surface cuts, which make it possible to create packaging models with advanced features like easy-opening packaging or open-close. This type of application is particularly popular in the food industry. This type of packaging doesnโ€™t require any tools to be opened and therefore adds value to the product itself.

Conclusion

CO2 laser sources are ideal for paper processing. The CO2 laser interacts perfectly with the chemical composition of paper materials. Using it in this sector is very advantageous. As you can imagine, however, the possible implementations are numerous.

We would be happy to put our extensive experience in CO2 laser applications for the paper industry at your disposal. Feel free to contact us for information or a free quote.

Laser cutting polyethylene foam

Thermoplastics are polymeric materials with incredible properties. Their name derives from their main property: becoming viscous when heated and solidifying once cooled.

These characteristics makes it possible to laminate and easily shape these materials. Industrial applications are endless: from the packaging to medical devices sector, without forgetting the electronics, automotive and food industries. There is no sector in which thermoplastic doesnโ€™t have a key role.
Laser cutting polyethylene foam

On this blog we have already seen how thermoplastics work well with laser technology. Microperforations, cutting, kiss-cutting are but a few examples of how well thermoplastics absorb the CO2 laser wavelength and offer great flexibility and high quality results.

Now, thermoplastic polymers can also be used in a foamy state. Polymeric foams, or expanded polymer, are obtained by treating the polymer chemically or physically until the right shape is obtained. Expanded polystyrene, expanded polyurethane and expanded polyethylene all belong to this category of materials.

Expanded polyethylene (akaย polyethylene foam) is one of the most popular foams used in the industrial sector, due to its lightness, insulating properties and resistance. This foam is ideal for laser cutting.

Laser cutting polyethylene foam

In order to cut polyethylene foam, a CO2 laser precisely and cleanly outlines the wanted shape in the polymer foam. This process is easily controlled digitally. The advantage of using laser technology is that the pieces are cut perfectly, down to the last millimeter and in a well defined shape. It is therefore ideal for highly detailed work.

An example of what co2 laser can do is tool shadowing. Basically it means cutting a layer of foam with cut outs of different sizes for each tool in your tool box. The tool will be perfectly kept still and safe inside the toolbox.

Laser cutting polyethylene foam

Making this application using only mechanically tools is very difficult if not impossible, because the expanded polyethylene sheet would have to be pinned down in order to cut out the shapes without ruining the material. This method works only if the shapes have straight lines. As soon as the lines are curvier or more detailed, it becomes difficult to trace the objects outline perfectly.

Laser technology makes it easy to cut polyethylene foam in the right size and shape. All you need to do is create a CAD file with the shapes to cut out. The file is then transferred to the software making it possible for even the most complicated of shapes to be created.

Cardboard and CO2 laser

It is now a fact: the current pandemic has led to an explosion in online shopping and home deliveries. Contagion risks have led people to reduce any situation that include physical contact. Shopping activities have moved online for all types of goods, including basic necessities. Online shopping seems to be an increasingly common behaviour.

Forward-thinking companies have viewed these changing social trends as an opportunity to experiment with new and more advanced forms of packaging. They cater both to the new needs of home shoppers and the ones of companies that want personalised forms of packaging that better protect their goods. There is also a strong need for eco-sustainable packaging that uses fewer resources.

Laser technology has made all these things possible.

Laser manufacturing of cardboard boxes

The paper industry has now been using laser technology for several years. The CO2 laser offers undoubted advantages to its production processes. It can be integrated into fully digital, fast and flexible production processes, which allow cardboardโ€™s technical and material characteristics to be exploited to their fullest.

Cardboard is an ideal packaging material. It is inexpensive and light and can be processed into many shapes to create boxes and packaging to suit all kinds of needs. And what’s more interesting, laser cutting corrugated cardboad gives stunning outcomes.

The introduction of digital fabrication has made it possible to considerably expand the range of packaging products. Laser makes product customisation both economical and advantageous. The fact that it is no longer necessary to change tools to create different types of products has encouraged innovation, and the experimentation of new formats. Customisations (products made specifically to cater to a certain need) are now achievable at lower costs.

Until recently, companies that wanted to send or package their products had little choice. They had to rely on the box formats offered on the market. Box manufacturers dictated the law and only offered standard shapes and sizes. If a company needed a box shaped in a particular way or with an easy opening, it was limited to what the market had to offer.

Creating boxes and packaging with custom features was not cost-effective for manufacturers or customers, unless the number of produced pieces justified the investment in production means. For customers, the only way to obtain customised packaging at a competitive price was to secure large quantities of orders. This is not always possible, particularly for small and medium-sized companies.

The use of lasers has brought about a real revolution in the way paper products are manufactured.

The production process of cardboard boxes is based on two fundamental operations, cutting and engraving, which are at the basis for all subsequent processes. Cutting separates the shape of the box from the cardboard sheet. Engraving creates folding lines on the box or devices for easy opening, such as tear-off systems. Folding the box along the cutting lines and gluing the flaps together produces the finished product, i.e. the box.

The advantages of lasers

The advantages of laser cutting are many. The laser allows these same processes to be carried out with greater speed and precision, making the production process much more flexible.

On materials such as paper and cardboard, the laser cutting process is instantaneous. The laser immediately vaporises the paper along the cutting line, resulting in precise, clean cut edges. Laser cuts need no further finishing.

Precision is ensured by the fact that the laser is a non-contact process. This makes it possible to make cuts along particularly intricate paths even at very small sizes.

But laser technology isnโ€™t only useful for traditional machining operations such as cutting and creasing. It can also perform tasks that traditional tools canโ€™t.

Laser Marking is one of these processes. In marking, the laser does not perform cutting or engraving, but merely modifies the surface layers of the material, which results in the blackening of the laser-processed parts. This technique turns the laser into a real digital printer that engraves marks directly on the surface of the material. In this way, all kinds of marks can be engraved, from logistical information like QR codes, barcodes and alphanumeric codes to actual images like company logos.

This gives the production system enormous flexibility: the same laser system can perform all these processes, even on a small number of parts. Cardboard packaging manufacturers can now offer their customers a lot more choice and create customised boxes, even in smaller quantities.

Contact us

Cardboard box manufacturers agree that the CO2 laser is an invaluable tool. It makes it possible to carry out work that cannot be done with traditional methods such as die-cutting. If you are a cardboard box manufacturer and are interested in a laser production system, please contact us. Our technicians will be happy to study the most suitable laser solution for your needs.

Laser welding of plastic film

The packaging sector has numerous applications for CO2 laser. There is nothing surprising there since the materials best suited for packaging are also the ones, due to both composition and shape, that work best with CO2 laser technology.

In previous articles, we have already seen some of the CO2 laser applications on materials such as thermoplastic film, wood and some of its by-products like MDF and paper and cardboard for innovative forms of packaging. The distinctive wavelength of CO2 laser makes cutting, perforation, incision and marking particularly efficient and cost effective.

Laser welding plastic film in a factory

CO2 laser is an efficient and versatile tool for the laser welding of thermoplastics, a popular technique used in the packaging sector. This process takes advantage of the fact that thermoplastics are easy to work with once theyโ€™ve been through a thermic treatment. In laymanโ€™s terms, the welding process consists of heating the area where the two thermoplastic pieces join with the laser beam until fusion point is reached.

This process can be applied to different types of plastics, either laminated or molded, opaque or transparent. There are many advantages to laser welding:

  • itโ€™s a very fast process
  • like all laser processes, itโ€™s extremely precise and easy to control
  • it doesnโ€™t leave residue or waste
  • it doesnโ€™t expose pieces to thermal or mechanical stress because the heated area is localised and the process isnโ€™t mechanical
  • itโ€™s highly automatable and easy to integrate with other systems, whether they be digital or analog

These characteristics have made it a tool of choice in sectors where precision, cleanliness and the absence of thermal or mechanical stress are determining factors. The production of biomedical devices or electronic devices, the production of parts and components for the automotive industry, the production of airtight packaging for the pharmaceutical and food industry are all examples of the applications of laser welding.

Laser welding for plastic film

In the world of packaging, laser welding is most used on laminated thermoplastics. The laser of choice for this technique is the CO2 laser.

Direct welding is the type of welding that works best with thin materials. As opposed to transmission laser welding used mainly for three-dimensional and moulded pieces, direct welding operates directly on the material. This process allows for a higher speed of productionand therefore increases productivity while lowering production costs.

The materials most used in the packaging industry are:

The interaction between the laser beam and the material cannot be predetermined. Many factors come into play: the type of polymer, the existence of added additives to the formula, the laser beamโ€™s speed of movement on the surface and the laser beamโ€™s intensity itself.

But as a general rule, the laserโ€™s effect is stronger on the materialโ€™s surface and decreases the deeper it gets. Adding carbon to thermoplastics can highly increase the materialโ€™s capacity for energy absorption, thus making the laser much more efficient.

Laser welding plastic film in rolls

Laser welding is perfect for the production of original packaging that brings added value to the product because it can work in a very localised way on complex shapes.

Equipment for laser welding of plastic film

A laser system for laser welding needs different components. The fundamental ones are a laser source, a scanning head and a software system to program and control the process.

Apart from the afore-mentioned items, a laser welding system should also include devices for product management, loading and unloading, and powering the laser source.

Laser welding plastic film in a packaging plant

In conclusion, laser welding applications are numerous since laser technology is so versatile. It can be adapted to completely digital processes or be integrated with analog production lines. This technology greatly lowers production costs and not only increases productivity but also the quality of the product.

Laser marking of identification documents

Marcatura laser documenti identificativi

Governments and organizations are constantly seeking solutions to make identification documents secure and tamper-proof. Cost-effective productions are key because in most cases security requirements combine with the need to maintain low costs.

Until not so long ago, all identification documents were made of cheap and readily available materials such as paper or cardboard. The documentโ€™s information was printed in ink or handwritten. Of course, not just any paper was used. In order to guarantee the originality of the document and combat counterfeiting, the paper was made using special treatments. Holograms, watermarks, or drawings were applied to the paper to make it as difficult as possible to falsify.

However, these products were not 100% safe since they could still at times be forged. Both the types of paper and the inks could be modified in such a way as to deceive even the most expert eye. This is the reason why the search for forgery-proof solutions has never ceased.

One of the solutions found was the laser marking of documents. The application consists of marking information directly on the material using the laser beam. The interaction between the laser and the material changes the surface layer causing a transformation that produces a mark. This mark is therefore not applied to the material but is an integral part of it. This technique guarantees that any successive modification to the document would result in irreparable damage that would highlight the counterfeit.

Laser marking can be used both on security paper – and on paper in general – but also on new-generation plastic identity documents.

Various objects such as ID cards, passports, credit cards, passes, or even hospital wristbands can be made using laser marking.

Given their identification function, these documents must have very precise functional characteristics:

  • the sign must be indelible and resistant to wear and tear.
  • the document must be difficult to forge or tamper with.
  • there canโ€™t be any defects
  • all documents must be identical

The marking process makes it possible to meet all these requirements and therefore satisfy the most stringent international safety requirements. The marking becomes an integral part of the material and cannot be removed. It is virtually impossible to forge a laser marked document unless you use the same tools and materials as the original document.

The laser marking process, like all laser processes, is computer controlled and therefore has a high repeatability and accuracy index. Once the process has been defined, the possibility of error is 0, and machining operations are carried out repeatedly with the same level of quality.

Laser marking lends itself to numerous applications. You can mark alphanumeric identification codes but also barcodes, QR codes, and even greyscale photos.

Laser allows you to add special security features such as microtext, variable images, i.e. images that change depending on the angle.

How the marking process works

It is a well-known fact that laser marking can be performed on various types of material. The best result is obtained on plastic materials such as polycarbonate and paper.

The marking on plastics is done by chemical degradation. The energy transferred by the laser carries out instantaneous transformations at the molecular level. The transformations change the visual appearance of the material by creating a dark-colored mark.

Laser marking also works on multi-layered documents. The laser can even reach a transparent layer by setting a specific wavelength. Marking can, therefore, be done at deeper levels and ensure that the mark is protected by a transparent surface layer and thus more resistant.

The possibilities go even further. Deeper marking with a tactile effect can be created through laser engraving techniques.

Laser engraving acts at a deeper level than laser marking and subjects the material to wider and more radical transformations. The mark made by engraving doesnโ€™t only have visual characteristics but also tactile ones. The combination of marking and engraving makes the ID much safer.

The laser marking process allows for results that cannot be obtained with other machining tools. Therefore it lends itself to the most advanced processes. In a world increasingly connected, having forgery-proof documents is more and more necessary. If you have such an application in mind contact us , we will help you make it happen.

Laser scoring for the packaging industry

Laser scoring is a wonderful technique to create advanced features on flexible packaging. Together with laser perforation it lets designer conceive easy opening packages, single portioned or disposable boxes, tear-apart openings that can enrich the experience of the product.

The rising success of easy to open packagesย has pushed producers to look for new packaging solutions.ย More than ever, consumers are used to easy-opening packaging.

The introduction of laser technology and digital converting processes has pushed packaging companies to find innovative solutions that were unthinkable of just a few years ago. Industrial lasers for packaging, such as the CO2 laser, give added value to a product by not only protecting it, but also making it easy to open.

Flexible packaging bags

Plastic film packaging, which has offered a wide scope for experimentation, is a perfect example of the added value of packaging.

As discussed in previous articles, CO2 laser can increase the breathability of the plastic film according to the product they contain. Fresh produce, for example, can be wrapped in micro-perforated bags in a modified atmosphere room to extend its longevity.

Laser scoring on plastic film bags to make packaging easy-to-open is another laser application that has many uses.

What is laser scoring?

A laser beam vaporises predetermined areas of a plastic film, thus creating the scoring. The weakening line that is created makes the packaging easy to open without the use of tools.

Bag with tear apart features

Laser incision has the advantage of removing the material in a precise and uniform way. This technique gives the possibility to closely control the depth of incision. By removing only the strict minimum amount of material, the integrity of the packaging remains untouched.

The right materials for laser incision

Laser incision is ideal for flexible packaging made in plastic film. These materials, which are some of the most commonly used in the packaging sector, are perfectly compatible with CO2 laser:

Plastic film packaging can be used for all kinds of products: food, cosmetics, chemical products, herbal and pharmaceutical products.

Laser scoring technology

There has been a paradigm shift in the world of packaging since the introduction of laser technology. We have shifted from the mass production of standardised products to the small production of highly tailored products.

This change has only been possible because laser technology is a digital production tool. It can be completely controlled via software and is fully automated. A scoring laser system can be designed right from the beginning of the process and can work in analog work flows. Regardless of the type of work flow, laser technology brings added value to the production process, making it simple and fast.

Laser incision is a very versatile tool since the depth of incision can be controlled. By loading different vector files into the system, you can easily and quickly go from scoring to cutting through the material.

A bag made of flexible packaging

The laser can make incisions in a straight line, following the reelโ€™s movement (down web?) or even transversally. The movement of the laser scoring is completely defined by the user. It can follow a straight line, the contour of a shape or a freeform path.

Laser technology is ideal for scoring because it is a contactless process. The lack of physical contact makes it possible to avoid problems such as the accidental rupture of the plastic film or the use of cutting tools. In order to achieve a high quality incision, the blades had to be perfectly sharp and therefore frequently changed. Production would to come to standstill in order to change machine parts which resulted in higher production costs.

The use of laser technology make all these problems obsolete. The only maintenance laser needs is a periodic gas refill. And now, with El.En.โ€™s self-refilling technology which allows the laser source to be recharged autonomously, even this minor inconvenience can be avoided.

The right laser source for laser scoring

In conclusion, the CO2 laser is ideal for scoring of plastic film. The previously mentioned materials respond well to the CO2 laser wavelength. The laser scoring process works best with a low power laser source or with up to a 300 W power supply. One should also take into consideration that the higher the laser power, the faster the production.

The possibilities given by system integrations and configurations are endless. Once the type of application has been decided, it becomes easy to choose the best configuration.