Laser engraving applications

Laser engraving applications on a thermoplastic pipe

Laser marking is one of the most common industrial processes. In its broadest sense it consists in using the laser beam to create marks on the surface of a material.

The process is simple: the laser heats a layer of material, instantly vaporizing it. The visual contrast between the part that has been processed and the rest of the material is the engraving.

CO2 lasers are the ones most used for this type of application. They are highly versatile and suitable for laser marking applications in virtually any industrial sector.

Laser marking lives under the umbrella of galvo scanning applications. In this family of applications, a scanning head is used to focus the laser beam on a surface. In other words, the scanning head moves around the laser beam (which otherwise would travel in a straight line) towards the points that need to be processed. It does so through special mirrors connected to galvomotors.

The scanning head is key in galvo scanning, and it is what gives this application great flexibility. The scanning head makes it possible to use the laser to impress any type of sign on a surface: from simple alphanumeric codes to complex images, for the impression which using laser is a winning strategy.

Compared to traditional systems, laser marking applications have several advantages:

  • cleanliness and speed
  • precision
  • versatility on materials
  • possibility of automation
  • respect for the environment
  • durability over time

Materials

The versatility of the CO2 laser allows laser marking to be applied to a wide range of materials. This family of lasers interacts very well with carbon-based materials such as thermoplastics, wood and its derivatives, fabrics and organic materials in general. Here is a list of the most used materials in laser marking applications.

Wood and derivatives

Wood and its derivatives are used in a large number of industrial sectors. Whether it’s packaging or signage, laser marking can be used to apply various types of signs or decorations. Regardless of the desired effect, the process will be fast and effective.

Plastic

Plastics and thermoplastics are today widely used for an infinite number of applications, especially in the packaging industrial sector. Acrylic, polyethylene, polyamide and similar plastics undergo laser marking very easily with excellent results.

Metals

Laser marking is very effective also on metals. Though the CO2 laser is not the most suitable for cutting metal, it is perfect for modifying its surface because it produces very sharp and clear incisions.

Fabrics and leathers

Laser marking is perfect for processing fabrics and leathers. Both natural and synthetic fibers interact very well with the CO2 laser.

Laser can be used on these materials for numerous applications ranging from finishing fabrics to decorating garments. The main advantage of laser marking for fabric is that it considerably decreases the use of water and chemicals, thus reducing the negative impact the textile sector has on the environment. Today, the majority of laser marking applications on fabric are on denim.

Glass and ceramics

Laser marking lends itself well to the decoration of objects made of glass and ceramic. In this application laser marking is mostly used for the decoration of finished objects. Glass objects can even be decorated from within. The laserโ€™s scanning head manages to reach the inside of the glass object, creating a three-dimensional image.

Biologic materials

The application of laser marking on biologic material is a recent thing. These materials are rich in carbon and therefore respond very well to the wavelength of the CO2 laser. The food industry has finally caught on to the benefits of the laser process that is very useuful for this sector thanks to its sterility.

Industrial sectors

The fact that this technology offers extreme flexibility in terms of choice of processed materials multiplies laser marking applications and opens it up to numerous industrial sectors. Indeed, it can be said that virtually any sector that uses compatible materials can benefit from laser marking applications. Here are some examples.

Automotive

In the automotive sector, laser marking can be used for a great number of purposes. An example is removing polyammid sheathing wrapped around the wires used in motors. Thanks to laser this process can be greatly streamilined, allowing for great economies in the production process.

Due to the flexibility allowed by the laser and the very low cost of the single machining cycle, laser marking lends itself very well to taylor made applications. From a commercial point of view this means that it is also possible to offer services such as interior customisation at a very low price and with a great economic return.

Labeling and packaging

The packaging sector is perhaps the one in which laser marking has most applications. Personalization and automation rule this sector so that the full potential of laser can be fully exploited. There are different types of applications that range from decoration of packaging to the engraving of identification codes and logos.

Laser labeling of food products is becoming increasingly popular. This application also has a name, natural branding. Laser labeling consists of replacing the self-adhesive label applied to products with a label engraved directly on the product by laser marking.

This labeling method makes it possible to obtain 100% compostable products and to reduce the use of packaging. On the one hand, adhesives composed of chemical substances are not used, and on the other hand, the consumption of potentially polluting plastic materials is reduced because the waste of the adhesive label substrate, usually not visible to the consumer, is eliminated. Laser labelling has been successfully applied both on fresh products and on cheeses and cold cuts.

Display panel production

The production of information panels is another great field of application for laser marking. This application is very efficient on the most commonly materials used in this industry (acrylic plastics, aluminum, glass and wood).

Laser marking makes it possible to design complex logos and to engrave writings of any type and length.

In contrast to traditional techniques such as screen printing or engraving, laser marking is indelible and therefore has a considerably longer life. The production process is also much faster and cleaner.

Textile, fashion and interior design sector

In recent years designers from around the world have discovered laser marking. Laser makes it possible to go directly from the design phase to the production phase.

This feature makes it ideal in areas where creative experimentation is a competitive advantage.

In fact, creating prototypes and experimenting with creative solutions is much easier if you follow a digital production paradigm (of which laser is part). Itโ€™s a quick step from the design on the computer to the finished product. Furthermore, laser can offer the designer more freedom from physical limitations imposed on his design by means of production.

For these reasons, laser marking is increasingly used in creative sectors. As we’ve seen before, laser can be used in the textile sector for the finishing of fabrics (e.g.: the coloring of jeans), but also for the creation of ornamental motifs on fabrics or both leather and faux leather for the clothing or interior design sectors.

Even wallpaper, curtains and carpets lend themselves very well to the application of decorative patterns by laser marking.

Another application in the interior design sector is the decoration of ceramic tiles. Original and complex patterns can be applied to ceramic tiles or other objects at a very low cost.

What is your application?

As seen in this article, laser marking can be applied to many areas. This technology grants important advantages in terms of speed and efficiency of the production process. It allows you to respond promptly to the demands of constantly evolving markets.

At El.En., we have a long experience in the production of CO2 laser systems for marking. Do you have an application in mind that could be implemented with laser technology? Let us know and we will be happy to find the solution that best suits your needs.

Fiber laser vs CO2 laser: a comparison

One of the most frequently asked questions we receive on this blog is about the difference between fiber optic Lasers and CO2 Lasers. These are the two types of lasers most used for industrial application. If compared to fibers lasers, CO2 lasers have numerous advantages that fiber lasers don’t have.

Both the CO2 laser and the fiber optic laser work in the infrared spectrum. There is however a substantial difference between them.

A typical fiber optic laser works at a wavelength of 1.064 micrometers. It is used in very specific sectors, such as metal cutting, which require a very high concentration of power.

A fiber laser cutting head while processing metal

The typical wavelengths of our CO2 lasers are 9.3, 10.2 and 10.6 micrometers. This flexibility makes it possible to work with different types of material. The area of application of carbon dioxide laser is not limited to metals only but can also be applied to wood, acrylic, glass, paper, fabric, plastics, films, leather, stone, etc.

Thanks to this feature, the use of CO2 laser has spread to a wide variety of industrial applications in recent years. Its flexibility and versatility make CO2 laser the most used type of laser. It offers both high quality and the ability to satisfy most customer requests.

CO2 laser cutting PMMA, polimetimetacrilato, also known as the brand name plexiglass

Versatility is not the only selling point of the CO2 laser has over fiber laser. Here are other features that make the CO2 laser the ideal choice for most applications:

  • More precise when cutting thick materials: the CO2 laser operates at a wider wavelength therefore it is more suitable than the fiber optic laser for processing thick materials. It also leaves a much smoother finish
  • Uniform quality: the quality is the same on all materials whilst with the fiber optic laser it can be slightly different depending on the density of the processed material
  • Straight line cutting speed: a CO2 laser is faster at cutting in a straight line, and also has a faster penetration time once the cut has been initialised
  • Possibility of control: the CO2 laser can work with materials of different thickness. The power and duration parameters of the laser beam can easily be adapted to the technical specifications of the material.
  • Greater safety: the light emitted by the CO2 laser does not have a blinding effect. It is therefore must simpler to make the production line safe.
  • Ease of implementation: the CO2 laser makes it possible to create light and compact machines, capable of satisfying all production needs, even those of smaller dimensions.

CO2 laser: versatility and reliability

On the basis of what we have written, it is clear that the choice between fiber laser and carbon dioxide laser depends on the type of application, i.e. the quality of the material and the technical requirements of the production.

CO2 lasers are perfect for cutting comples shapes out of wood

If the fiber laser is particularly effective on metals, the CO2 laser offers much more versatility and control. It allows to process most plastic materials and all organic materials but it can also be used on metals for surface treatment and laser marking operations. It also has a long history of industrial applications, making it a reliable and safe tool.

The CO2 laser is therefore the best choice in most material processing industrial applications. If you have a process in mind that could be carried out using a CO2 laser, contact us, and we will be happy to find the application that best suits your needs.

Thinking like a laser: when using laser technology is the best choice

Until recently and partly still, industrial processes were focused on mass production. This encouraged a tendency to standardize products and processes, to reduce the number of possible customizations and to maximize the number of pieces produced thus increasing the companyโ€™s profit.

null
A CO2 laser marking application

A production paradigm of this kind could work as long as the relationship between producers and customers was controlled by one side. The market bought what the producer offered. Recent technological advances, combined with changes in the market and client requests, have brought about a paradigm shift.

Highly customized forms of production, which were previously economically unsustainable, are now possible thanks to the use of technology and digital manufacturing processes.

Laser is the cornerstone of this change and has revolutionized many sectors allowing the reduction of production costs, the speeding up of production and the possibility of creating customized products on a mass scale.

This last statement might seem like a paradox, but to fully understand its scope, one must change the traditional way of looking at industrial production processes.

Think like a laser

The acquisition of a laser system is not just the acquisition of a new machine. It also requires the adoption of a new way of thinking about production. It becomes necessary to know the advantages that laser offers, exploit its strengths and use it productively and economically.

Let’s go over laser technologyโ€™s strengths point by point: versatility, precision, cleanliness, speed and lack of contact.

Laser engraving of wood
Wood is among the materials that best absorb CO2 laser

Versatility

Laser is versatile on many levels. First, CO2 laser can work with a wide range of materials. This type of laser gives its best results on materials of organic derivation (wood, paper, cardboard, leather, fabrics, acrylic plastic materials, etc.) on which it can effectively perform any type of processing. On the other hand, CO2 laser has a more restricted range of applications on metallic materials, particularly in the field of laser engraving and marking or for surface treatments such as paint removal.

Precision

The very nature of the laser beam makes it a highly controllable tool. Its parameters and features are easily managed with a software, and they can be set according to the desired result. This feature of laser has paved the way for precision machining and made it possible to create perfectly calibrated pieces based on the functions for which they were created.

Laser creating identification numbers
Laser are the perfect choice when precision is key

An example of this type of application is the perforation and cutting for food industry. For this particular type of packaging, holes are made on the surface of the plastic film to improve the breathability of fruit and vegetables. The perforations vary depending on the productโ€™s characteristics.

This is just one example of the applications made possible by laser technology. Other examples include the perforation of leather for car interiors, the manufacture of pipes for irrigation, the microperforation of instruments for the health sector.

Cleanliness

Of all the machining processes based on the removal of material from a workpiece, laser is the one that produces the least residue because the material is removed by sublimation. Even the processing waste (i.e. the parts of unused raw material) can be reduced thanks to nesting, which is managed by a special software.

Computer control makes it possible to make the most of the work surface. In most cases, one can obtain more finished pieces from the same material using this technology than with traditional methods. In this respect, laser represents a leap in quality if compared to other processes based on chip removal, or on the use of various types of abrasive fluids.

Laser creating cuts on plywood
Laser can perform several processes that can’t be easily performed with traditional mechanical tools

Moreover, the need to remove production waste is reduced. The laser beam concentrates high energy on the processed material which, undergoes chemical-physical alterations that cause its instant removal.

This feature makes laser ideal for all the industrial sectors where the absence of processing waste and a clean production environment are key. Consider, for example, the field of electronics, the medical device sector, and the packaging sectors.

The absence of waste and other residue also has an economic advantage: in fact, the cuts made with the CO2 laser do not need further finishing. They are performed without leaving the slightest trace of material behind. Each piece therefore takes less time and money to produce.

Speed

In industrial processes, the speed at which work is performed is a fundamental requirement.

Laser is capable of performing work at a very high speed. This feature is particularly evident in the execution of complex design operations.

Processes such as the engraving of barcodes and identification codes, the decoration of fabrics, or the cutting of complex shapes are carried out practically instantaneously by a laser beam.

But even slow and expensive processes such as fabric finishing can be effectively replaced by a CO2 laser. A previous article explored the finishing of denim fabric through laser scanning processes. In the past, the discoloration of jeans was performed using very slow chemical processes, which were expensive in terms of resources and extremely polluting.

The integration of laser in the production chain of these products has made it possible to significantly speed up the production process, achieve considerable savings in terms of resources, as well as reduce the ecological footprint.

Lack of contact

Laser is a non-contact process, a feature that comes with many benefits.

Firstly, tool wear is limited. As a result, maintenance costs are reduced. The laser beam, (the instrument that physically performs the processing), emits a coherent and focused beam of light. Since there is no mechanical contact between the tool and the material, it wears less.

Of course, even a laser source needs routine maintenance. The laser-producing medium, CO2 gas, is consumed over time. The self-refilling technology developed by El.En. for its laser sources has made it possible to greatly reduce maintenance. The gas can be refilled in-house which reduces the machineโ€™s periods of inactivity.

The lack of mechanical limitations on laser movement, the small diameter of its radius and the possibilities offered by numerical control combine to give very high tolerances during production. Engraving or cutting complex shapes become extremely simple. This is a feature that makes laser an ideal choice for all the sectors that use design to get a competitive edge, such as fashion.

Cutting complex shapes out of a board of wood with laser
With laser is easy to cut out complex shapes

It is clear that the introduction of laser in the production process is advantageous for all the applications where personalization, speed and production flexibility are decisive.

Companies that deal with productions with a high level of customization, which need precise processing, which must respond to a market with multiple demands, can compete in a cost-effective way with other companies that make economies of scale their strength.

Whatever your application is, please, contact us using our form. We will be glad to support you with our experience!

Die cutting abrasive material with laser

In recent years, CO2 lasers have increasingly been used as work tools in the abrasive material sector. CO2 laser technology can perform advanced processes which are well-adapted to new generation products (suitable for the most innovative processes and sectors).

The production of abrasive discs is a perfect example of this type of production. One of the most appreciated features of an abrasive disc is its ability to facilitate the elimination of debris from a work surface. In order to obtain the desired effect, there are holes on the disc to facilitate the expulsion of debris. The holes need to have a certain size, be evenly and precisely distributed on the disc, and have a specific surface density to be effective.

Nowadays, in the abrasive disc production sector, the most used tools are mechanical ones like blades and dies. The main advantage of these tools is that they are cost effective.

However, the production of abrasives with dies also has several disadvantages:

  • Limited accuracy. Due to technical limitations, blades and dies cannot perform work under a certain diameter, with narrow spacing or in special arrangements. Therefore abrasives produced with mechanical methods can hardly reach the optimization levels required by the most advanced applications.
  • Deformed surfaces.ย The cutting process is achieved through mechanical contact. This exposes the processed object to the risk of deformation. The disks produced from a matrix sheet are often deformed by the pressure of the dies. The disc acquires a concave or convex shape which reduces the usable abrasive surface and therefore makes it less effective
  • Tooling costs are increased. Cutting tools get worn quickly by their application to abrasive materials. These tools need to be replaced frequently which increases the overall production costs.
  • Lack of adaptability. Most shape variations and modifications require the acquisition of different cutting tools.

Laser technology for abrasive materia die cutting

The CO2 laser is an optimal production medium for flexible abrasives since it has none of the previously mentioned shortcomings. In recent years the cost oflaser material processing has lowered, and therefore become much more used the abrasive material sector.

Laserโ€™s main advantages in cutting abrasives are:

  • Easy to calibrate. Characteristics such positioning, distribution, and the diameter of the holes (which can be very small) can be calibrated with great precision. Laser is therefore suitable the advanced, high precision processes required by the market
  • No risk of deformation. Laser is a non-contact process therefore the risk of the material getting deformed are close to none. Abrasive discs produced with laser are much more efficient than abrasive discs produced with mechanical methods
  • Low maintenance costs. Lasers used for the processing of abrasive materials are not subject wear because there is no physical contact between the tool and the material
  • Flexibility. Laser technology makes it possible to totally or partially modify the shape to be cut by simply making changes to the processing file on the software. This method saves on time and the cost of procuring a new mechanical tool

A very promising sector

These are just some of the possible laser applications in the field of abrasives, and each has its own characteristics and needs. Laser processing of abrasives is a very promising field of application. Our CO2 laser sources combined with our galvanometric scanning heads are ideal for this type of application: powerful, effective and precise, they can be easily integrated into existing production systems or to new digital converting machines as well as to an industry 4.0 production chain. Contact our El.En.experts to answer your questions and find the right solution for your needs.

Laser and packaging: the main applications

A group of people in a studio discussing different design solutions

Laser material processing started a revolution in the industrial world. It has brought quantitative improvements such as an increase in production speed, and qualitative ones, such as the possibility of creating customized products with high added value, even on a small scale.

The packaging sector immediately understood that the use of laser could offer endless possibilities for innovation. Packaging is a fundamental aspect of most manufacturing sectors and laser technology is taking a strong foothold in this growing market. Laser reinforces and improves the characteristics of packaging materials, helping them perform their desired function even better.

Packaging in itself performs a wide range of functions:

  • First of all, it has a protective function. Packaging must protect the product from external agents. In the case of food, it prevents deterioration and guarantees the productโ€™s integrity
  • Secondly, it has an aesthetic function. Packaging must convince the consumer to choose a specific product on a supermarket shelf. In a world increasingly rich in consumer goods, packaging can sometimes be a productโ€™s only distinctive factor
  • Thirdly, it has an informative function. Important informations such as ingredients, expiry date, production lot or barcode must be visible on the product
  • Last, but not least, it has a practical function. Packaging must make the product easy to handle and use. Thanks to laser cutting, packaging can be designed in such a way as to facilitate the use of the product itself. Easy to open packaging such as food bags or easy cutting ones such as yoghurt pots are two examples of this type of packaging.

Functional and fast packaging with innovative technology is now easier than ever with laser technology.

Why process packaging with laser?

Laser-based manufacturing is extremely flexible and give the possibility to experiment on a great variety of applications. Laser, and in particular CO2 laser, achieves its maximum levels of efficiency when it processes the most commonly used packaging materials such as:

  • paper and cardboard: used to produce boxes and packaging, these materials can be cut, marked and perforated. The producers can thus create boxes with original shapes that can bring out the abstract qualities of the product
  • wood and derivatives (for example MDF) are used to create innovative packaging. Food crates to transport produce are but one example
  • plastics and derivative: thermoplastic film polymers such as polypropylene, polyethylene and PET are among the most used materials for packaging. Plastic film can be adapted to the most diverse needs through cutting, marking or drilling processes. Food safe plastics benefit greatly from these applications. For example, containers can be perforated, to regulate the passage of air or to create filtering systems, but also be cut into complex shapes. Other applications in this sector include the cutting of plastic films used to make various types of packaging, including aluminised plastic films

Laser technology is also a great asset for the packaging sector because of the possibilities offered by automation. The benefits of a fully digitized and automated manufacturing process are significant. The automated process reduces the possibility of errors, allows changes to easily be made in real time, guarantees extremely uniform results while having standard and repeatable characteristics.

For example, imagine being a manufacturer of plastic parts for the automotive industry. A digital manufacturing workflow would allow you to automatically use laser to engrave a production batch number on a pieceโ€™s packaging, centralize this information in a database, as well as have a system that allows you to trace all the logistics, from the production to the end customer. Should there be a defect or a malfunctioning piece, the production batch (or any other information) could easily be looked up directly in the database.

Laser processing in the packaging sector

Many of the advantages derived from laser processing are due to the fact that laser is a no-contact technology. The laser beam is used as an energy source that gets concentrated on a specific area in order to perform an application. Here are some of the main applications laser systems can perform.

Laser cut

In laser cutting, the beam vaporizes a portion of material according to a defined path. The final quality of the cut depends on the material. CO2 laser cut creates extremely clean edges on most materials. The final piece does not need further finishing and is ready for use.

Laser cutting can be used to cut windows and openings on a package, to create details such as tear openings, easy-to-open tabs, filtering systems, to cut pieces of packages for later assembly.

Laser marking and engraving

Laser marking and engraving use laser to imprint a mark on a material. The two processes are very similar.

We speak of laser marking when the transformation of the material occurs only superficially. In the case of laser engraving, there is a deeper transformation of the material.

In the first case the sign, even if indelible, results in a discoloration of the material. In the second case the sign is much deeper and it is also possible to obtain a tactile sensation on the incision.

Manufacturers mostly use laser marking and engraving on packaging. Laser allows them to permanently engrave their logo in remarkable detail. Expiration dates or production batches can be applied on the packaging, taking advantage of the automation capabilities offered by laser systems. This application is known as laser coding.

Perforation and laser microperforation

Drilling machines use laser to create holes on a material. Typically the holes are made on sheets or slabs of material. Finished pieces can also be perforated.

The holes can have different dimensions. Indeed, the possibility of varying the size of the perforations in order to adapt them to a specific purpose, is the true advantage of laser perforation.

The term laser microperforation is used when the holes have microscopic dimensions. Laser perforation and microperforation have numerous applications in the packaging sector.

Laser perforation can be used to create filters and other features on the packaging, such as the creation of perspiration holes for food trays.

Laser microperforation can be used to create breathable packaging (such as modified atmosphere packaging). In this case, microperforation can be used to calibrate the packaging to the product and increase its shelf life. The processing of flexible plastic films takes great advantage of this application which allows you to create wraps capable of significantly extending the life of the product.

A sector in constant evolution

Laser technology makes it is possible to decide on a desired result and calibrate the process on it. Many laser applications have not yet been tested which means there is a whole world of opportunities to explore. The tailor made application that could bring numerous advantages to your production system could be just around the corner.

Here at El.En., we have experimented with thousands of laser applications for packaging over more than 35 years. If you work in this sector and are looking for your next personalized application, contact us and let us know what you need. We will be happy to help you build the ideal solution for your application!

Labeling through laser marking

A laser beam marking letters and numbers on a surface

Laser marking has become a standard in many industrial sectors. Its advantages are flexibility, speed, precision, the quality of the etched signs, eco-friendliness.

The vast majority of laser marking applications are aimed at identifying products and components. This role is traditionally played by labels of various types, printed or engraved and subsequently applied to products. Laser marking replaces the labels and allows information to be engraved directly on the surface of the product or component.

How laser marking process works

The laser marking process takes place through the interaction between the laser beam and the surface of a material. This interaction triggers an ablation process, through which a superficial layer of variable size is removed. The final result depends on which type of material is being marked and which type of laser is being used. The CO2 laser is the most used in laser marking processes because it can be applied to many materials.

What information can be laser marked

Laser technology makes it possible to engrave all kinds of information about a product. Some examples are:

  • barcodes
  • QR codes
  • sequences of alphanumeric characters
  • production lots and expiration dates
  • copyright information
  • manufacturer’s logos
  • compliance logos

The advantages of laser labeling

Currently, there are three main ways to apply information on the surface of a product:

  • Inkjet printing. It prints alphanumeric codes using a dot-matrix printer. This type of application is used on organic products that could be damaged by the laserโ€™s heat. However in recent years it has been found out that laser can also be used successfully to label fruit, vegetables and other organic materials. Even if ink-jet printing guarantees a high level of productivity, it isnโ€™t always long lasting since different materials retain the ink better than others, and the maintenance of the production line can be costly.
  • Metal stamping. It prints signs by plastic deformation of the materialโ€™s surface. The imprinted marks are evident and can’t be counterfeited easily. It can be applied on metal labels that are then affixed to the different components, but it is not suitable for direct marking applications on the component itself. Metal stamping requires the use of a specific imprinting tools and dies, which have high maintenance costs. Also, changing the information to print is expensive because it requires changing the printing tool.
  • Self-adhesive labels. Information is printed on a self-adhesive label which is then applied to the product. Labels are not very environmentally friendly because the back of the stickers are discarded.

Compared to these marking systems, the creation of labels by laser marking has undoubted advantages.

  • Quality. Laser markings are perfectly defined and never fade, however much the product is subjected to intensive use. Laser technology suits well where preventing counterfeiting is necessary.
  • Cost. While it is true that laser requires a greater initial investment than the other methods, it also has much lower maintenance and processing costs. Laser is advantageous when used in production processes that foster its strengths, that is favor high levels of customization, highly automated management of processes and perfection of the output.
  • Flexibility. The printed information can be modified and updated very quickly without the need to adapt work tools or its ensuing costs. Tooling changes and machine preparation are reduced to practically nothing. Laser marking makes it possible to access a pieceโ€™s recessed areas that would remain inaccessible with conventional technologies.
  • Respect for the environment. Laser labeling is more eco-friendly than traditional labeling since the consumption of plastic, ink and glue for labels is reduced considerably, as well as the costs associated with the disposal of unused stickerโ€™s support.
  • Efficiency. The information on the labels can be immediately digitally processed. It is therefore possible to increase the traceability of the processed pieces. Laser marking of labels can also be made on the fly.

Applications

There are many laser marking applications which range from the traditional ones like the marking of parts and components to the more advanced ones like the laser marking of food. There are many examples of applications in this latter area:

  • engraving of codes on eggshells: this case study shows how laser marking can replace ink printing on eggshells
  • marking of cold cuts and cheese wheel: cheese wheels and cured meat can be easily marked with laser. In this application laser marking replaces hot marking
  • marking of fresh produce: in this application, laser marking is used to engrave information and logos directly on the surface of fruit and vegetables. In this case, laser marking replaces the self-adhesive labels

Other application examples include:

  • Automotive: windshield engraving, identification of car components
  • Gifts: product information
  • Electronics: laser marking marking of silicon boards for integrated circuits
  • Engineering: marking of construction components

What is your application?

You might be considering how laser marking could help you improve your business. Here at El.En., our team of experts will be happy to help you choose the right laser system for your needs. Our laser sources and our scanning systems are used all over the world and help thousands of companies create high quality products. Contact us to learn more.

Laser Paint Removal

An aircraft in a hangar for maintenance operations

Paint stripping operations have always been an expensive and time consuming process. Removing paint from an object, especially a large painted surface, requires many hours of work. In most cases, solvents and big quantities of water are used to strip paint which has negative consequences on the health of workers and the environment.

An alternative to traditional paint stripping is laser paint removal, an effective, fast and environmentally friendly method to remove paint from a surface.

Traditional paint removal methods

Paint has been used to cover surfaces and object since ancient times. Their function is twofold: on one hand they protect the material they cover from wear and tear, on the other, they strongly contribute to the aesthetics of the object.

Practically all industrial sectors make use of paint, but for some, it is a crucial part of the production process.

This is the case, for example, in the vehicle manufacturing industry, whose objects – airplanes, ships or trains – have large painted surfaces.

Aircraft can be repainted in cases of general maintenance or after a change of ownership.

Traditionally, chemical and physical methods are used to remove paint, i.e. the paint is softened with solvents and then scrapped mechanically. This technique has other drawbacks:

  • it uses of highly polluting substances
  • areas that donโ€™t need stripping need to be masked to avoid damage
  • the chemicals used need to be rinsed off, which causes a high water consumption
  • it produces potentially toxic waste and chemical vapors which are bad for operators and the environment

Laser depainting makes it possible to overcome these drawbacks, transforming stripping into a fast, effective and precise process.

The process of stripping paint with laser

The laser paint stripping process consists in irradiating the painted surface with a laser beam that vaporizes the paint layer.

The paint is removed practically instantly thanks to a sublimation process. Compared to traditional methods, laser paint stripping is a much faster process. In a few hours it is possible to remove tens of square meters of paint from a surface. The only consumption of resources is the electricity used to power the system.

Harmful solvents or other chemicals are unnecessary. Just apply the laser to the surface and in a few seconds, the paint is removed.

Which technology for laser paint stripping?

Defining the technology suitable for a laser stripping system in detail is difficult without knowing its specific context of use. The fundamental components of a system of this type are a laser source and scanning head.

Theoretically, the choice of the laser source depends on the chemical composition of the paint to be removed. It is a well known fact that each material absorbs a certain wavelength more or less well. The most efficient laser source has a wavelength that is best absorbed by the material it is trying to sublimate.

However, an important consideration must be made. It would not be viable to create a paint stripping machine which could only strip on one type of paint. A laser depainting machine must be able to remove the greatest number of paints on the market.

The CO2 laser offers the best compromise between reliability and versatility. A carbon dioxide laser source is therefore the most suitable tool for this application. The wavelength of 10.6 micrometers is in fact effective on most of the paints on the market because it is highly absorbable. It can remove both white and colored paints, without damaging the underlying surface.

The scanning head is the other fundamental element of a system for laser stripping. This device is used to precisely direct the laser to a specific part of the surface and to keep it focused on that work area. These two characteristics make it an extremely precise work tool.

The choice of the head depends not only on the laser used, but also on how much surface needs to be covered. Large surfaces require particular scanning heads such as the El.En. AZSCAN HR70 which manages to cover an area as big as 2300 x 2300 mm.

The fundamental components of a laser system for paint stripping are The laser source and the scanning head. However, their implementation is strongly guided by the type of work needed. The possibilities are endless and each application requires the study of a tailor-made system. Contacting our technicians is the best way to find out the possibilities this application offers.

CO2 laser glass marking – CO2 laser and glass

Glass is one of the many materials that can undergo CO2 laser treatments. Laser is most often used for markings or cuts. In this article, we will explore how compatible glass is with laser technology and its possible applications.

A glass with laser marking

Glass composition

Glass is a material of natural origin, composed mostly of silica (SiO2). The material is heated until it reaches melting point and then left to resolidify. This process yields glass, a transparent material with a great resistance to corrosion.

Glass does have some defects, though. It is fragile and has a low resistance to thermal expansion.

Glass object with markings on it

Types of laserable glass

It is important to take its negative characteristics into consideration before applying laser technology to glass. Its type of composition and production will be deciding factors when choosing where to use laser.

Composition

Most of the glass available on the market isnโ€™t composed solely of silica. Depending on the glassโ€™ final use, other components are added to the silica to modify the materialโ€™s properties.

Adding substances to the material does alter its โ€˜laserabilityโ€™. For example, laser technology cannot be used when metal has been added to glass. Crystal is part of this category of glass. In order to increase transparency, lead is added to the composition, thus making it incompatible with laser.

A laser decorated glass with opaque finishing

Production

Most glass is produced industrially. Nonetheless, one can still find productions of artisanal glass objects; obviously at a higher price.

The first type of glass has a more uniform structure which makes it a better candidate for laser applications. Artisanal glass, on the other hand, isnโ€™t as easy to use with laser. The glass can contain structural and compositional inconsistencies like microfractures. This glass could easily crack when exposed to the heat generated by the laser.

How laser technology works on glass

Though laser applications usually work by sublimation for most materials, in the case of glass, the process is different. As previously mentioned, glass has a low tolerance for thermal expansion. Laser technology takes advantage of this characteristic by generating fractures at a microscopic level. These result in markings or cuts.

How does this process take place? Glass contains trapped microbubbles of air. When the laser touches upon the surface, it heats it and causes the dilatation of these bubbles. Due to the materialโ€™s lack of flexibility, this dilatation generates the aforementioned micro-fractures.

Various decorated glasses for champagne

CO2 laser markings on glass

Laser marking is the most common technique applied to glass. It is usually used for decorations or the marking of codes and other information.

Productions using laser have many advantages compared to traditional methods. They are cleaner, cheaper and offer a much wider range of applications.

Markings can be done in different ways, depending on the type of glass.

Soda glass

Soda glass is the most common form of glass. It is used for windows, bottles, glass flatware and other commonly used glass objects. It works well with laser technology.

On this type of glass, markings are made by generating thousands of microfractures on the glassโ€™s surface. Thermal shock causes the dilatation of the glass, which, due to its rigid nature, fractures at a microscopic level. The final result is an opaque marking with a satin finish. It looks very similar to results obtained using more traditional methods, but at a much lower price.

Examples of this process can be found in the decoration field (decoration of glasses and flatware, windows and cabinets), in the car industry (identifying codes markings on car windshields and windows), in the production of glassware for laboratories (measurement markings).

Quartz glass

Quartz glass is obtained from the fusion of quartz rather than silica. It has a high resistance to heat, great optic transmissibility and a high resistance to corrosion.

CO2 laser markings on quartz glass are done through superficial fusion. The materialโ€™s fusion modifies the reticular structure of glass making light refract differently on the markings compared to the rest of the surface.

Boro-silicate glass

Boro-silicate glass, known commercially as Pyrex, is obtained by adding boron and other composites to the silica. The chemical reaction produces a glass that is highly resistant to thermal expansion. It is usually used for the production of flatware and oven trays.

Boro-silicate can undergo CO2 laser markings.

Contact us for more information on laser marking of glass.

CO2 Laser for security paper

The packaging and paper goods industry are the sectors which have most benefited from the introduction of the CO2 laser. This tool has triggered innovations in applications, production methods and in products.

Security paper | CO2 laser and security paper
Most of the laserโ€™s benefits are due to the fact that it is a contactless tool. As opposed to traditional methods, lasers can follow a complex cutting path and allows for a much more flexible production. It can be used for complex applications and guarantees extreme precision at a high production speed.

Laser applications for security paper

Its precision and flexibility make laser technology perfectly suited for government issued paper and security paper.

Government issued paper and security paper have a number of inbuilt tricks to avoid being counterfeited and guarantee their originality. Security paper is usually employed by state or government agencies in the production of goods such as:

  • official documents
  • I.Ds
  • bank documents
  • checks
  • banknotes
  • shares
  • certificates
  • visas
  • government stamps
  • passports

In order to avoid tampering or counterfeiting there are many possible devices which include:

  • watermarks
  • security thread
  • surface treatments
  • holograms
  • security windows

Each company has its own particular applications and patents. The producers of security paper constantly strive to make their product more innovative and tamper proof.

Laser technology makes some necessary applications to prevent counterfeiting possible. The fact that lasers can perform cuts at a controlled depth and follow complex processing paths make them ideal tools for this sector.

Co2 laser and security paper

Kiss cutting, laser marking, perforation and laser etching are some of the possible applications. Letโ€™s take a look at them, one by one.

Laser kiss cutting

This application is often used in the production of stickers. Kiss cutting consists of a very light cut on a piece of paper. Unlike normal laser cutting, the cut doesnโ€™t go through the paper. It makes it possible to separate the sticker from the matrix, allowing the user to remove only the sticker. It is perfect for the production of government issued paper such as revenue stamps or postage stamps.

Laser scoring

Laser scoring is used to create folding lines on a piece of paper. The process is very similar to laser kiss cutting. Laser technology offers great control over all parameters. This makes it easy to decide the depth of the incision. The scoring, for instance, can be used to prevent the reuse of stickers or stamps. As soon as they are unstuck, they become irreversibly destroyed.

Laser drilling

Laser drilling is used to make little holes on a material. These perforations can have varying diameters and even reach microscopic levels. The drilling of indelible alphanumeric codes is one of its possible applications. The code becomes an intrinsic part of the document. Passports, for example, have serial codes inserted inside them.

Laser engraving

In laser engraving (a subset of laser marking applications), the beam is used to remove a superficial layer of material. This layer can have different depths and configurations. The engraved shapes can vary greatly from logos to alphanumeric codes, from symbols to images and all are indelible. Laser engraving can be performed on paper but also on other materials such as plastic. Plastic I.D cards are an example of this.

How to refill CO2 lasers

CO2 lasers are one of the most widely employed technologies in manufacturing. The technology is so flexible and powerful that it is installed on a large number of industrial machines, used in a wide array of sectors. CO2 laser sources are well renowned for their resiliency: a machine based on this technology insures thousands of hours of high quality work.

This type of laser still needs periodical maintenance work. Its weakness is a slow but inevitable loss of power.

Gas leaks, CO2 lasersโ€™ weakness

Excessive gas leakage has consequences on the laserโ€™s output. Its power will either decrease over time or be reduced drastically all of a sudden during operation. This phenomenon produces a reduction in the quality of operation: the laser beam becomes unstable and precision work is compromised. When that happens, laser maintenance is necessary.

Maintaining CO2 lasers

Maintenance can be done by the producer or by a company specialised in this sort of operations. Generally, maintenance work includes disassembling the machine and refilling the gas tube. Many specialised companies offer this type of service, which often also includes the cleaning and realignment of the optics and other components of the laser source.

These operations, even when carried out by professionals, do expose the laser source to potential infiltrations of dust and other microscopic foreign bodies. This sort of infiltrations could compromise the laser beam quality and, as a result, the good working conditions of the machine. Transporting the machine to the maintenance service facilities can also expose it to accidental damage.

It is important to bear in mind that every maintenance will cause a standstill of production that can last from a few days up to a few weeks.

The advantages of El.Enโ€™s Self-Refilling technology: Never Ending Power

As a solution to the drawbacks of maintenance, El.En.โ€™s research and development department has developed an innovative Self-Refilling technology. Thanks to Self-Refilling, gas-refilling operations can be carried out directly in-company.

The Self-Refilling system is based on disposable CO2 gas canisters. Every laser source has an in-built lid-protected slot for gas canisters. When it is time to refill the laser source, one needs to simply open the lid, take the empty canister out and put a new canister in. This way the laser source will maintain its max power and its operational standards will be preserved. Servicing operations can be carried out manually and without the laser source producerโ€™s assistance.

The ability to independently refill a CO2 laser source brings about several advantages. Here are some:

  • interruptions to production are reduced to a few minutes
  • crucial parts of laser sources, such as the optics, stay sealed
  • chances of infiltration of dust and foreign bodies are greatly reduced
  • chances of damages from transportation are reduced

There are huge savings on resources and the laser source is always at max power and efficiency.

The Blade RF series of Self-Refilling CO2 laser sources are equipped with this innovative technology. These sources all have a compact design, come in multiple power options and can operate on a large variety of materials. Explore our range of products and discover the vast array of available applications.